

(Project No. 288133)

D5.3.1 Initial LinkSmart-enabled environment

Published by the BEMO-COFRA Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme
 and

Conselho Nacional de Desenvolvimento Científico e Tecnológico
Objective ICT-2011-EU-Brazil

http://www.cnpq.br/index.htm

Document control page

Document file: D5.3.1_Initial_LinkSmart-enabled_environment_Final.docx

Document version: 1.0

Document owner: Peeter Kool (CNet)

Work package: WP5 – Distributed Control Logic and Enabling Features

Task: Task 5.3 LinkSmart-enabled monitoring and control infrastructure

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of Changes made

0.1 Peeter Kool 2012-11-01 Initial ToC

0.5 Peeter Kool 2012-11-15 Initial content

0.7 Peeter Kool, Ardi Tjandra 2012-11-20 Added content

1.0 Peeter Kool 2012-12-12 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Matts Ahlsén 2012-12-12 Approved

Legal Notice

The information in this document is subject to change without notice.

The Members of the BEMO-COFRA Consortium make no warranty of any kind with regard to this

document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the BEMO-COFRA Consortium shall not be held liable for errors

contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Document version: 1.0 Submission date: 2012-11-30

Index:

1. Executive summary ... 4

2. Introduction .. 5

3. Architecture of the initial LinkSmart-enabled environment 6

3.1 LinkSmart Network Manager and addressing scheme 8
3.2 LinkSmart Event Manager .. 11

4. Examples of LinkSmart integration .. 16

4.1 Architecture of the PLC Proxy ... 16
4.2 Architecture of the Unity integration (Monitoring Application) 17

References ... 21

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 4 of 21 Submission date: 2012-11-30

1. Executive summary

This document is delivered with the software deliverable D5.3.1 Initial LinkSmart-enabled

environment. This deliverable documents the prototype from a LinkSmart environment perspective
and includes descriptions of the typical integrations done, one based on proxies and another one

where the integration is done in the device. The document includes also an overview of what a
LinkSmart environment is.

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 5 of 21 Submission date: 2012-11-30

2. Introduction

This document is delivered with the software D5.3.1 Initial LinkSmart-enabled environment.

The initial LinkSmart-enabled environment is described at an architecture level in chapter 3. This

chapter also includes a small overview of the LinkSmart middleware. The following chapter 4
contains description of some of the most important integrations in to the initial LinkSmart

environment, i.e. LinkSmart proxies in the prototype deliverable. The actual code documentation for
these proxies can be found in deliverable D6.1 IoT-enabled legacy devices for production
monitoring.

The work has primarily been done in Task 5.3 LinkSmart-enabled monitoring and control
infrastructure.

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 6 of 21 Submission date: 2012-11-30

3. Architecture of the initial LinkSmart-enabled

environment

The initial LinkSmart enabled environment consist basically of the LinkSmart network, see Figure 1

below, and the different devices and their proxies.

LinkSmart
Network Manager

LinkSmart Network

LinkSmart
Event Manager

Monitoring Application
Unity

PLC Proxy Camera Proxy

...
PLC

Figure 1: Architecture of the initial LinkSmart enabled environment.

The LinkSmart network is a private P2P network that provides communication services and addressing

through SOAP-tunnelling (see 3.1) as well as an event manager that can be used for publishing of and

subscribing to events (See section 3.1 and section 3.2 for an introduction to LinkSmart). In the first

demonstrator setup we ran only a small LinkSmart network containing only one LinkSmart server node (see

deployment view Figure 2). From the developers point of view it will be completely transparent if the

network is extended over several nodes in different network locations in a real deployment, i.e. the proxies

and applications will not change.

The initial LinkSmart environment was primarily implemented using the LinkSmart event infrastructure as

the carrier of messages in-between different components. All components that are integrated register

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 7 of 21 Submission date: 2012-11-30

their event service in the network manager in order to get a LinkSmart address (HID) that is then used for

making subscriptions in the LinkSmart Event Manager.

LinkSmart Server

LinkSmart Network
Manager

LinkSmart Event Manager

Tablet

Monitoring
ApplicationPhone

Monitoring
Application

PC

Monitoring
Application

PC

PLC Proxy

Camera

Camera

LinkSmart Network

Figure 2: Deployment overview of demonstrator

In the first demonstrator there were two main strategies for adding devices/services to the LinkSmart

infrastructure:

1. Creating a proxy: This was done for the devices/services that cannot be extended with LinkSmart

functionality, either because of processing power or because they are closed systems. These

include the PLC and Arduinos. For these devices a LinkSmart proxy is created that runs on a

gateway and implements the LinkSmart services and communicates with the device, i.e., acting as

the proxy for the device in the LinkSmart network.

2. Direct integration: Some of the devices, such as the camera and the Unity based monitoring

application, are powerful enough to run the LinkSmart services directly on the device. This means

that the devices themselves can register their services on the LinkSmart network and host the

services on the Device.

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 8 of 21 Submission date: 2012-11-30

Section 4.1 provides an example for a proxy based integration for the PLC proxy integration. Section 4.2

provides an example of direct integration.

The following two sections will give a short overview of LinkSmart, further reading regarding LinkSmart can

be found in (LINKSMART, 2012), (LINKSMART2,2012) and (LINKSMART3,2012)

3.1 LinkSmart Network Manager and addressing scheme

The LinkSmart network manager consists of three main functions:

 P2P overlay network

 HID addressing scheme

 SOAP Tunneling

The following sections will give a short introduction to these functions

3.1.1 Building a P2P overlay network

The main objective of the Network Manager is to interconnect different LinkSmart Enabled Devices and

services through the network. The main problem of this task is that most of the networks may be hidden in

Local Area Networks, behind firewalls, routers and Network Addressing Translators (NATs), so it would be

difficult to interconnect the different nodes.

However, the Network Manager solves this problem by building an overlay network, independently of the

network addressing and protocols.

The Network Manager, relies on JXTA P2P1 platform in order to build the overlay network. JXTA is a set of

open, generalised P2P protocols enabling any connected device on the network to communicate and

collaborate. Using the JXTA protocols, LinkSmart devices and services are directly connected even if they

are connected in different networks separated by firewalls or NATs.

1 http://en.wikipedia.org/wiki/JXTA

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 9 of 21 Submission date: 2012-11-30

Figure 3: Overlay Network

The figure above shows an example of how the different nodes are interconnected in the LinkSmart
Network.

3.1.2 The HID addressing scheme

The addressing scheme used in the LinkSmart Network is based on identifiers called HID. An HID represents

a service endpoint, for instance a WebService endpoint. Each service or device has to create an HID in order

to be visible inside the LinkSmart Network. For simple services the Network Manager provides one

interface for registration:

String HID createHIDwDesc(String description, String endpoint)

Any application, or software component, in the system can register its services or devices in the Network

Manager. A specific interface (createHIDwDesc) provides a mechanism for registering HIDs using a

description and the local endpoint where the service will be placed.

The description is provided by the application or component itself, and it provides a way for identifying the

service in other LinkSmart-enabled devices. In this way, an application running on another LinkSmart-

enabled device is able to get all the HIDs matching a specific description through the following Network

Manager interface:

String[] getHIDsbyDescription(String description)

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 10 of 21 Submission date: 2012-11-30

The endpoint allows the Network Manager to know where to deliver the data received for an HID, because

otherwise it would be impossible to determine which component or application is responsible of managing

the resource registered with that HID.

3.1.3 SOAP Tunnelling

Thus, the Network Manager enables a way to communicate between different LinkSmart Enabled devices

transparently, building an overlay network in which resources (devices, services and contents) are

identified by an HID. The main objective of the SOAP tunnelling communication is for LinkSmart to provide

SOAP messages exchange using the P2P transport schemes provided by the Network Manager.

In order to use P2P networking/addressing/transport schemes together with web services and UPnP we

need some kind of virtualisation of endpoints that allow us to use P2P networking. For this reason, all

endpoints for UPnP and web service calls are grounded in a SOAP sink (ideally locally) which repackages the

SOAP message and routes it through the Network Manager, as shown in Figure 4. The Network Manager is

responsible of the message transmission and finally calls the SOAP sink that performs a local SOAP call to

the intended SOAP endpoint.

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 11 of 21 Submission date: 2012-11-30

Transmission

SOAP Sink

(Acts as a WWW server)

Network Manager

SOAP Sink

W
S

U
PnP

S
e

n
d

D
a

ta

Network Manager

R
e

c
e

iv
e

D
a

ta
L

o
c
a

l
S

O
A

P
 c

a
ll

SOAP Tunnelling

through Network

Manager

S
e

n
d

D
a

ta

EndPoint

URI in HTTP POST

/{senderHID}/{receiverHID}/{sessionID}/endpoint

Figure 4: SOAP tunnel

The P2P networking with the SOAP tunnelling technique will facilitate event management, as well as SOA in

generalin the BemoCofra architecture.

3.2 LinkSmart Event Manager

Below we describe the practical usage of events when developing application logic based on the LinkSmart

event manager. Examples are based on the .Net client code of LinkSmart, but there is also a corresponding

Java version.

3.2.1 Event structure

Events are a useful tool for several situations in application development. When working with sensors

publish/subscribe based events processing is an efficient way of retrieving values, instead of polling sensor

values. This way, multiple clients can receive events with the current sensor values.

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 12 of 21 Submission date: 2012-11-30

Events in LinkSmart are implemented using a standard “publish/subscribe” model and the event itself is

built up with a “topic” that is used for defining the event topic and an arbitrary number of key value pairs.

<Event>

 <Topic>MyTopic/SubTopic</Topic>

 <Part>

 <Key>ExampleKey</Key>

 <Value>ExampleValue</Value>

 </Part>

 <Part>

 <Key>ExampleKey2</Key>

 <Value>ExampleValue2</Value>

 </Part>

 <Part>

 <Key>ExampleKeyN</Key>

 <Value>ExampleValueN</Value>

 </Part>

</Event>

Listing 1: Event topic and events

There are two main parts when working with events to be used in applications:

 Creating events to be consumed elsewhere

 Listening to events

3.2.2 Creating events

In order to create events one only needs to contact the Event Manager. In LinkSmart projects
created using the .net libraries the Event manager is available in meventmanager. Basically one sets

the Topic of the event and then populates the Key/Value pairs.

 //Create an event with two key/value pairs

 global::part[] eventValueKayPairs = new global::part[2];

 eventValueKayPairs[0].key = "ExampleKey";

 eventValueKayPairs[0].value = "ExampleValue";

 eventValueKayPairs[1].key = "ExampleKey2";

 eventValueKayPairs[1].value = "ExampleValue2";

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 13 of 21 Submission date: 2012-11-30

 m_eventmanager.publish("ExampleTopic", eventValueKayPairs);

Listing 2: Example code creating and publishing an event

3.2.3 Listening to events

Listening to events require that a web service is created that receives the events and it is required that it

follows a specific EventSubscriber WSDL. In the projects created with the LinkSmart.net libraries this

already done and exists in the EventSubscriberService.cs.

The creation of the Web Service is done using standard .net WCF methods:

 //Create the ws on port 8123

 string address = string.Format("http://{0}:{1}/Service", "localhost", "8123");

 Uri[] BaseAddresses = new Uri[]{

 new Uri(address)};

 //Turn off 100-continue

 System.Net.ServicePointManager.Expect100Continue = false;

 //Create the event subscriber

 using (ServiceHost serviceHost = new ServiceHost(typeof(Test), BaseAddresses))

 {

 try

 {

 ServiceMetadataBehavior smb;

 if ((smb =

serviceHost.Description.Behaviors.Find<ServiceMetadataBehavior>()) == null)

 {

 smb = new ServiceMetadataBehavior();

 smb.HttpGetEnabled = true;

 serviceHost.Description.Behaviors.Add(smb);

 }

serviceHost.AddServiceEndpoint(typeof(IMetadataExchange),

MetadataExchangeBindings.CreateMexHttpBinding(), address + "mex");

serviceHost.AddServiceEndpoint(typeof(EventSubscriber), new

BasicHttpBinding(BasicHttpSecurityMode.None), "");

 serviceHost.Open();

 }

 catch (Exception e) { Console.WriteLine(e.Message); }

Listing 3: Creation of the Web Service for event listening

The next step is to define the function that will receive/implement the Web Service call. In this case the

message handling needs to be quick, because the Event Manager will remove the subscriber if the call fails

due to time out. If the processing of individual events takes a lot of time one should consider using

asynchronous worker threads so that Web Service call can return immediately.

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 14 of 21 Submission date: 2012-11-30

The code below shows an example implementation of the method that receives the events. This

implementation only writes the event to the console.

 #region EventSubscriber Members

 //Event call back interface

 notifyResponse EventSubscriber.notify(notify request)

 {

 string result = request.topic + "\n========\n";

 try

 {

 foreach (part _part in request.@event)

 {

 result += _part.key + "=" + _part.value + "\n";

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 }

 Console.WriteLine(result);

 return new notifyResponse(true); }

 #endregion

Listing 4: Event reception method

The final step is to subscribe to the events that one wants to handle. This involves creating an HID for the

event Web Service endpoint and registering the events that will be subscribed using the Event Manager.

 //Create HID for Event Subscriber WS

string myhid = m_networkmanager.createHIDwDesc("eventExample", address);

 //Listen to ExempleEvent

 m_eventmanager.subscribeWithHID("ExampleEvent", myhid);

 //One can listen to multiple events with same interface

 m_eventmanager.subscribeWithHID("ExampleEvent2", myhid);

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 15 of 21 Submission date: 2012-11-30

It is also important to remove the subscriptions when the process ends. Otherwise one can receive multiple

events for one actual event, because we might have multiple subscribers with the same end point. The

code below cleans up subscriptions and HID

 //Unsubscribe to Events

 m_eventmanager.subscribeWithHID("ExampleEvent", myhid);

 m_eventmanager.subscribeWithHID("ExampleEvent2", myhid);

 //Remove HID

 m_networkmanager.removeHID(myhid);

Listing 5: Subscribe/Unsubscribe to events

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 16 of 21 Submission date: 2012-11-30

4. Examples of LinkSmart integration

4.1 Architecture of the PLC Proxy

OPC Server

Siem
en

s S7
-1

2
0

0
D

river

LinkSmart
Proxy

O
P

C
 D

A
 C

lien
t

SO
A

P
W

eb
service

Even
t

P
u

b
lish

er

P
o

llin
g Th

read
s

Even
t B

ro
ker

A
p

p
licatio

n

NotifyPublish

HTTP/WS

TCP/IPPROFINET HTTP/WS

Figure 5. PLC Proxy Architecture

OPC: the term OPC stands for OLE (Objects Linking and Embedding) for Process Control specific for

automation devices. It was developed to ensure the communication of real-time data between control

devices coming from different suppliers, in order to provide a common bridge for Windows based software

applications and process control hardware.

Therefore, to enable this uniform integration between hardware and software, a connection through the

OPC server must be established. Moreover, following the requirements of OPC Data Access, an OPC Item

object, in this case a PLC variable, must be bundled into an OPC Groupobject before it can be accessed by

an OPC client.

In our scenario, the OPC client is a .NET application that accesses the PLC variables through the OPC server

and is mostly responsible for three things:

 Publish events in accordance to the states of PLC variables:

The prerequisite for this task is the initialization of an event publisher within the LinkSmart

network, as well as the various event objects that represent different data flows in the scenario. To

keep track of the PLC variables, the application enters a thread that pools the variables and

performs comparisons of their values at different timestamps (in this case, every 500 ms). When a

variable’s value changes, the appropriate event object is updated and subsequently published into

the network.

 Modify PLC variables in accordance to incoming events:

The application must also initialize an event subscriber and provide a delegate method that

determines which tasks should be performed when a certain incoming event is received.

Afterwards, the client simply waits for the events and modifies the appropriate PLC variables when

a certain event arrives.

 Provide an outward mechanism to access and modify PLC variables:

The client then utilizes Windows Communication Foundation (WCF) service to provide the other

parts of the system a possibility to work with the PLC variables. These services include the setter

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 17 of 21 Submission date: 2012-11-30

and getter methods for most of the variables contained in the PLC. It should be noted that the PLC

variables that actually control the state of hardware (the “actuator” variables) should not be

modified from outside the PLC in order to ensure the correctness of the PLC logic, and therefore no

set methods are provided for them.

The following is the (sequence) diagram of the scenario that the client application adheres to. The client

application resides the same lane/column as the PLC. Incoming arrow into the column denotes incoming

events while arrows with the opposite direction denote events published by the application.

Figure 6: System Scenario

It bears repeating that to perform its tasks the client application must first establish a connection with the

OPC server. Furthermore, the client also needs to register an OPC Group and an array of OPC items (PLC

variables) that it wants to have access to. Finally, due to the nature of its functionalities, the client

application must be active as long as the system is running.

4.2 Architecture of the Unity integration (Monitoring Application)

Unity is a cross platform development platform for games and other 3D visualisations, see (Unity,2012).

Applications developed with Unity run on a range of different platforms including PC, Android and iOS. The

language used for the developing in Unity is Mono which is an Open Source version of the .Net

environment.

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 18 of 21 Submission date: 2012-11-30

The monitoring application is developed in Unity because of the good visualisation capabilities as well as

the cross platform capabilities. Because Unity runs on more powerful platforms, i.e. tablets, smartphones

etc, and that it contains a full development environment we choose to integrate it with LinkSmart directly

without usage of any proxy.

Unity Mono Platform

Web Server Class

Network Manager Event Manager

Service endpoint

Web Request Handler

1, Register Service Endpoint
2, Subscribe to events

3, Recieve events

Unity Objects

Figure 7: LinkSmart integration with monitoring application (Unity)

The basic integration of LinkSmart (See Figure 7) consists of two basic components:

 Web Server class: Implements an HTTP server that can be extended with handlers.

 Web Request Handler: That intercepts HTTP request made to the Web Server class, parses them

and finally invokes the corresponding actions that map to an event.

The basic interaction steps necessary to connect to the LinkSmart network are:

1. Create a service endpoint: This involves registering the event consumer as a service endpoint in

the LinkSmart Network Manager, i.e. getting an HID for the endpoint. As soon as there is an HID for

the endpoint it is possible to invoke the service on the LinkSmart network using SOAP tunnelling.

2. Subscribe to events: This step uses the HID for the event consumer to subscribe to events. This

means that all matching events (Depending on which Topics has been subscribed to) will be

forwarded to the event consumer service endpoint.

Note that normally in most programming environments these call backs would be made using Web Service

libraries as opposed to running a general Web Server and intercepting the HTTP calls, but Unity lacked the

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 19 of 21 Submission date: 2012-11-30

support for this when handling parallel incoming events so we had to go down to the HTTP level and parse

the incoming messages ourselves.

The following listings will illustrate (though a bit simplified) how this work.

 public void RunHttpServer()
 {
 //Start the Web Server at port 8080
 m_endPoint = "http://*:8080/"; ;
 m_webServer = new WebServer(m_endPoint);

 //Put up a request Listener
 m_webServer.IncomingRequest += WebServer_IncomingRequest;
 m_webServer.Start();

 //Attach the endPoint to the LinkSmart network

 NetworkManager.NetworkManagerApplicationClient nm = new
NetworkManager.NetworkManagerApplicationClient();

 string hid = nm.createHIDwDesc(0,0,"UnityClient", m_endPoint);

 //Make a subscription , Topic is a regexp and we want to subscribe to all
events, i.e Topic=.*
 EventManager.EventManagerPortClient em = new
EventManager.EventManagerPortClient();
 em.subscribeWithHID(".*", hid);

 }

Listing 6: Setting up the web server and registering the endpoint

In Listing 6 above shows how the web server is started and how we register the service in the LinkSmart

network . It also shows how we make a subscription for all events to the service end point. Not also that we

add a request listener that will intercept the calls to the web server.

 public void WebServer_IncomingRequest(object sender, HttpRequestEventArgs e)
 {
 HttpListenerResponse response = e.RequestContext.Response;
 HttpListenerRequest request = e.RequestContext.Request;

 StreamReader sr = new StreamReader(request.InputStream);
 try
 {
 XmlDocument xDoc = new XmlDocument();
 if (!sr.EndOfStream)
 {
 xDoc.Load(sr);

 //We have a request;
 string Topic = "";
 XmlNode xNode = xDoc.SelectSingleNode("//*[local-name()='topic']");
 if (xNode != null)
 {
 Topic = xNode.InnerText;
 Listener.Part[] parts = CreateParts(xDoc);
 ProcessEvent(Topic, parts);
 }

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 20 of 21 Submission date: 2012-11-30

 }

 }

 catch (Exception ex)
 {
 System.Console.WriteLine("Exception When Processing HTTP Call");
 System.Console.WriteLine(ex.Message);
 }

 }

 static public Listener.Part[] CreateParts(XmlDocument xDoc)
 {
 XmlNodeList xNodes = xDoc.SelectNodes("//*[local-name()='Part']");
 Listener.Part[] res = new Listener.Part[xNodes.Count];
 for (int i = 0; i < xNodes.Count; i++)
 {
 Listener.Part p = new Listener.Part();
 XmlNode xKey = xNodes[i].SelectSingleNode("//*[local-name()='key']");
 if (xKey != null)
 p.key = xKey.InnerText;
 XmlNode xValue = xNodes[i].SelectSingleNode("//*[local-name()='value']");
 if (xValue != null)
 p.value = xValue.InnerText;

 res[i] = p;
 }
 return res;
 }

Listing 7: Parsing the incoming event

Listing 7 contains the actual parsing of the incoming event . The function WebServer_IncomingRequest is

called by the Web Server when an HTTP call has been received. Since it is a Web Service call the payload is

in SOAP format, i.e. XML, we parse it using an XML parser. The CreateParts function parses the events key

value pairs. In most programming environments all this parsing would be automatically handled by the

normal Web Service libraries. But as explained earlier the Mono framework in Unity lacked support for

parallel invocation of the web service service.

BEMO-COFRA D5.3.1 Initial LinkSmart-enabled environment

Document version: 1.0 Page 21 of 21 Submission date: 2012-11-30

References

 (LINKSMART, 2012) http://www.hydramiddleware.eu/news.php, visited 2012-11-15.

 (LINKSMART2,2012) http://sourceforge.net/projects/linksmart/, visited 2012-11-15.

 (LINKSMART3,2012) D12.9_Final External Developers Workshops Teaching Materials.pdf

 ,visited 2012-11-15.

 (Unity,2012) http://unity3d.com/unity/ , visited 2012-11-15.

http://www.hydramiddleware.eu/news.php
http://sourceforge.net/projects/linksmart
http://www.hydramiddleware.eu/hydra_documents/D12.9_Final%20External%20Developers%20Workshops%20Teaching%20Materials.pdf
http://unity3d.com/unity/

