
Document version: 1.0 Submission date: 2011-11-30

BEMO-COFRA
Brazil-Europe MOnitoring and COntrol FRAmeworks

(Project No. 288133)

D8.4 Training Package

Published by the BEMO-COFRA Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7
th

 Framework Programme
and

Conselho Nacional de Desenvolvimento Científico e Tecnológico
Objective ICT-2011-EU-Brazil

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 2 of 89 Submission date: 2011-11-30

Document control page

Document file: D8.4 Training Package
Document version: 1.0

Document owner: Trine F. Sørensen (IN-JET)

Work package: WP8 – Dissemination and Exploitation
Task: T8.4 – Training
Deliverable type: R

Document status: approved by the document owner for internal review
 approved for submission to the EC

Document history:

Version Author(s) Date Summary of Changes made

0.1 Trine F. Sørensen 2011-11-14 ToC
0.2 Trine F. Sørensen 2011-11-15 Content
0.3 Trine F. Sørensen, Ferry

Pramudianto
2011-11-17 Exe Sum and introduction added.

Edited content.
0.4 Markus Taumberger 2011-11-29 POBICOS chapter added
0.5 Peter Rosengren, Peeter Kool 2011-11-20 Added chapter on extending ontology

model
0.6 Peter Rosengren 2011-11-22 Added chapter on extending ontology

model
0.7 Peter Rosengren, Peeter Kool 2011-11-23 Added chapter on how to create Basic

LinkSmart Application
0.8 Peter Rosengren, Peeter Kool 2011-11-23 Added chapter on how to create

Advanced LinkSmart Application
0.9 Ferry Pramudianto, Trine F.

Sørensen
2011-11-29 Picture and content edited following

Claudio Pastrone’s comments. Very
minor corrections following review
comments

1.0 Ferry Pramudianto, Trine F.
Sørensen

2011-11-30 Final version submitted to the European

Commission

Internal review history:

Reviewed by Date Summary of comments

Claudio Pastrone 2011-11-26 Comments and suggestions to
content and language.
Approved with comments.

Legal Notice

The information in this document is subject to change without notice.

The Members of the BEMO-COFRA Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the BEMO-COFRA Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 3 of 89 Submission date: 2011-11-30

Index:

1. Executive summary ... 6

2. Introduction .. 7

2.1 Purpose and context of this deliverable .. 7
2.2 Background .. 7
2.3 Scope .. 7

3. LinkSmart Middleware Overview ... 9

3.1 Wireless Devices and Networks ... 9
3.2 Trust and Security ... 9

4. LinkSmart Architecture.. 10

4.1 Device Classification ... 11
4.2 Applications and Devices ... 12
4.3 Applications ... 12
4.4 LinkSmart Devices / Device Proxies .. 12

5. LinkSmart Technologies .. 13

5.1 Java .. 13
5.2 OSGI .. 13
5.3 .NET ... 13
5.4 Network .. 13

5.4.1 P2P / JXTA ... 13

5.4.2 SOAP ... 14

5.5 Security Technologies ... 14

5.5.1 XACML ... 14

5.5.2 XML Security and Web Service Security ... 14

6. LinkSmart Components ... 15

6.1 Network Manager ... 15

6.1.1 HIDs and their management in Network Manager .. 16

6.1.2 Other Network Manager Functionalities .. 16

6.2 Event Manager ... 17
6.3 Trust Manager .. 17
6.4 Crypto Manager .. 18
6.5 Access Control Policy Framework .. 18

6.5.1 XACML ... 20

6.6 Obligation Framework ... 21
6.7 Discovery Manager ... 22
6.8 Security Library .. 23
6.9 Security Design .. 23

7. Installing the LinkSmart Middleware ... 25

7.1 Prerequisites .. 25
7.2 Required Bundles ... 25

7.2.1 Core required bundles .. 25

7.3 Crypto Manager Setup... 26
7.4 LinkSmart bundles .. 26
7.5 VM Arguments ... 28
7.6 Running the framework ... 29

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 4 of 89 Submission date: 2011-11-30

8. Software Development Kit ... 32

8.1 LinkSmart Commons ... 32

8.1.1 LinkSmart Middleware API ... 32

8.1.2 LinkSmart Middleware Clients .. 32

8.1.3 LinkSmart Configurator ... 33

8.2 Network Manager ... 35

8.2.1 LinkSmart Definition of Device To Device Communication 35

8.2.2 The Peer-to-Peer Network Architecture ... 36

8.2.3 Purpose ... 36

8.2.4 Main Functionalities ... 37

8.2.5 LinkSmart Web Service Provider .. 37

8.2.6 Crypto HIDs ... 39

8.3 Device Application Catalogue ... 42

8.3.1 The Graphical Browser .. 42

8.4 Discovery Manager (Framework) .. 49

8.4.1 Physical Discovery ... 50

8.4.1 Network discovery based on UPnP ... 50

8.4.2 External Discovery .. 51

8.4.3 Semantic Discovery ... 51

8.5 Event Manager ... 53
8.6 Access Control Policy Framework .. 55

8.6.1 Policy Enforcement Point ... 55

8.6.2 Policy Decision Point ... 56

8.6.3 Policy Administration Point .. 56

8.6.4 Policy Information Point ... 57

9. Creating a Basic Linksmart Application.. 58

9.1 Creating a Linksmart application from a template 58
9.2 Initiating the Network Manager .. 59
9.3 Initiating the Application Device Manager .. 60
9.4 Working with devices .. 60
9.5 Applications Bindings .. 61

10. Creating an Advanced LinkSmart Application .. 64

10.1 Initiate Application ... 64
10.2 Searching and finding for devices... 65
10.3 Invoking Device Services .. 66
10.4 Understanding the LinkSmart Device XML ... 67
10.5 Extending the LinkSmart Device XML ... 70

11. Device Developer Kit .net .. 72

11.1 Using Intel Service Author for UPnP Technologies 72
11.2 Using Linksmart .Net DDK tool .. 74

12. Extending the LinkSmart Ontology model .. 81

13. POBICOS Overview .. 84

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 5 of 89 Submission date: 2011-11-30

13.1 System inspection protocol ... 84

13.1.1 General Architecture .. 84

13.1.2 Services ... 85

13.1.3 Communication... 85

14. Glossary .. 86

References ... 89

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 6 of 89 Submission date: 2011-11-30

1. Executive summary

The BEMO-COFRA project will be using the middleware LinkSmart which was developed in the Hydra
IP project and it is therefore necessary to provide BEMO-COFRA software developers (not already
familiar with LinkSmart) with a thorough description and tutorial of the considered middleware. This
deliverable aims to provide the required knowledge by firstly presenting high level architectural and
subsystem level descriptions of LinkSmart and secondly presenting the lower level implementation,
functionality and how-to-configure details useful to build applications based on the LinkSmart
Middleware platform.

This deliverable will therefore supplement the internal training workshops planned for the BEMO-
COFRA project: a first training workshop focusing particularly on LinkSmart will be held during the
first week of December 2011 and a second workshop is planned for February 2012.

The LinkSmart middleware is an intelligent software layer that is placed in between the operating
system and the application layer. The first part of the present deliverable provides the reader with
an understanding the software architecture of LinkSmart, applications and devices. The main
building blocks of the LinkSmart middleware are the different “LinkSmart Managers”. A LinkSmart
Manager encapsulates a set of operations and data that realise a specific functionality. LinkSmart
Managers include: Network Manager, Event Manager, Trust Manager, Crypto Manager, and
Discovery Manager. These managers, their functionalities, purpose, and their implementation are
described in further detail.

The LinkSmart middleware offers a large collection of reusable core software components to
experienced developers. Based on these software components, programming abstractions allow for
programming with well-known concepts from the field of pervasive and ambient computing through
reducing the details of the underlying implementation. LinkSmart applications are built by
programming networked ambient intelligent devices. Devices are made programmable by the
LinkSmart middleware thru proxies as well as by embedded components. LinkSmart uses different
technologies such as Java and OSGI, also integrating network functionalities (e.g. JXTA), and
security related technologies (e.g. XACML).

The second part of this deliverable concerns the installation of LinkSmart; what is required and how
to install and set-up the different managers. It is complete with illustrations (screen shots). In
addition, tutorials on the Software Development Kit (SDK) and the Device Developer Kit (DDK) are
presented. The SDK tutorial concentrates on the software interfaces of each LinkSmart component /
manager / tool, and how to use them. The DDK tutorial focuses on the process of LinkSmart-
enabling a device and is aimed at developers who want to use network embedded devices and build
applications on top of the layer that communicates with the same devices. Moreover, how to
creating LinkSmart Applications is described.

The project POBICOS, targeted at computing environments which feature collections of objects,
equipped with sense-compute-actuate embedded nodes, which differ in their sensor, actuator and
computing resource, is presented to give the reader a general overview. A POBICOS training session
during the first training workshop in December 2011 entitled “Protocol for monitoring and control of
WSANs in unreliable networking environments” will allow the trainees to gain from the results and
experiences of POBICOS.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 7 of 89 Submission date: 2011-11-30

2. Introduction

2.1 Purpose and context of this deliverable

This deliverable D8.4 Training Packaged is primarily aimed at the software developers in the BEMO-
COFRA project. It presents an overview and description of LinkSmart as well as different useful
tutorials which will allow BEMO-COFRA’s software developers to use, configure and implement the
LinkSmart middleware to fit with the objectives of BEMO-COFRA. The LinkSmart middleware was
developed in the Hydra IP project and it proved to be a helpful tool for application and device
developers to interconnect seamlessly heterogeneous device.

The material in this deliverable will be used to complement the two internal training workshops that
will be organised within the first 6 months of the project. The first internal training workshop will
take place during the first week of December 2011 and will allow software developers to gain a
hands-on experience with the LinkSmart middleware. In addition, knowledge and experiences from
the ebbits project and the POBICOS project will be shared in the workshop. Project partners who
participated in these projects and who have experience in using LinkSmart in other projects will be
providing the training to those partners who are new to LinkSmart. The current deliverable will be
available before the first training workshop and will thus allow the trainees to familiarise themselves
with LinkSmart before the workshop, just as they can return to the descriptions and tutorials in this
deliverable throughout the project as necessary.

2.2 Background

The BEMO-COFRA project will develop an innovative distributed framework allowing networked
monitoring and control of large-scale complex systems. Heterogeneous smart objects, legacy devices
and sub-systems will be integrated, cooperating to support holistic management and to achieve
overall systems’ efficiency with respect to energy and raw materials. The BEMO-COFRA project will
address both technological aspects and user needs to promote a wider adoption of large-scale
networked monitoring and control solutions.

The overall system of the BEMO-COFRA architecture will represent a comprehensive, distributed
framework comprising a middleware layer, large WSANs, PLC and SCADA systems, and not least
computers and powerful devices being deployed in manufacturing plants. A platform for dealing with
WSANs will be developed to support monitoring and control operations in manufacturing
environment. To provide IP-based services for WSANs the existing LinkSmart middleware (EU
LINKSMART-Project) is going to be utilized, i.e. LinkSmart proxies for WSANs will be developed to
offer WSANs based functionality to the outside world. In addition, LinkSmart proxies for PLC and
SCADA systems will be defined.

BEMO-COFRA reuses the results of the well-reputed Hydra IP and Pobicos STREP and the recently
started ebbits IP featuring a Service Oriented Architecture (SOA) and a middleware able to expose
smart objects, legacy devices and sub-systems’ capabilities by means of web services.

2.3 Scope

Following the Executive Summary in Chapter One and the Introduction in Chapter Two, an overview
of the LinkSmart middleware is given in Chapter Three.

Chapters Four to Six provide a high level architectural and sub-system level description of the
LinkSmart Middleware.

More specifically, Chapter Four focuses on the LinkSmart Architecture by describing how it consists
of “LinkSmart Managers”, each encapsulating a set of operations and data that realise a specific
functionality. This chapter also deals with devices and high level applications.

Chapter Five summarises the technologies adopted in LinkSmart to realise its goals and Chapter Six
gives an overview of the LinkSmart components, their functionality, purpose, and which technologies
are used and why for their implementation.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 8 of 89 Submission date: 2011-11-30

Chapters Seven to Twelve build on Chapters Four to Six by going into more detail and present the
lower level implementation, functionalities and how-to-configure details as used to build applications
based on the LinkSmart Middleware Platform.

More specifically, Chapter Seven concerns the installation of the LinkSmart middleware, providing a
detailed tutorial and screen shots to illustrate.

Chapter Eight introduces the Software Development Kit (SDK) and describes the software interfaces
and gives a complete tutorial on how to use the different LinkSmart components, managers and
tools.

Chapter Nine describes how to create basic LinkSmart Applications while Chapter Ten moves on to
deal with creating advanced LinkSmart Applications.

Chapter Eleven introduces the Device Developer Kit (DDK).

Chapter Twelve describes how to extend the default LinkSmart Ontology model.

Chapter Thirteen gives an overview of the POBICOS project.

Finally, Chapter Thirteen provides a glossary of important terms used in the LinkSmart “language”.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 9 of 89 Submission date: 2011-11-30

3. LinkSmart Middleware Overview

The LinkSmart middleware provides a development platform for Internet of Things applications
(IoT). It can be seen as an intelligent software layer that is placed in between the operating system
and the applications. LinkSmart contains several software components or managers, which have
been carefully designed to handle the various tasks needed to support the cost-effective
development of intelligent applications for networked embedded systems.

LinkSmart can be incorporated in both new and existing networks of distributed devices, which
operate with limited resources in terms of computing power, energy and memory usage. LinkSmart
allows developers to incorporate heterogeneous physical devices into their Internet of Things
applications by providing easy-to-use web service interfaces for controlling any type of physical
device irrespective of its network interface technology. Thus the device becomes part of the Internet
of Things and can be accessed and controlled using standard IoT technology.

LinkSmart is based on a semantic Model Driven Architecture for easy programming and incorporates
solutions for device and service discovery, peer-to-peer communication and diagnostics. LinkSmart-
enabled devices also offer secure and trustworthy communication through distributed security and
social trust middleware components.

The Software Development Kit (SDK) allows developers to define innovative Internet of Things
applications with embedded ambient intelligence computing using the middleware, while the Device
Development Kit (DDK) allows device developers to enable their devices to participate in a Internet
of Things network.

3.1 Wireless Devices and Networks

Middleware for wireless objects should be able to hide the complexity of the underlying
infrastructure while providing open interfaces to third parties for application development and ease
of use for end-users. In LinkSmart, the communication layer is not part of the middleware, which is
transparent to it. LinkSmart provides:

• Dynamic resource discovery and management

• Tools for advanced control making the solutions reactive to the physical world

• Objects definition and querying for data using semantic technologies

• Unique network adapters in order to avoid specific networking technology.

The LinkSmart middleware leverages on available network technologies to change user-
environments and discover available, location based information resources.

3.2 Trust and Security

In order to solve the rapidly growing challenges of privacy, identity theft and trust, the LinkSmart
solution adopts two main approaches in tandem:

The first approach targets the secure design and prototyping of mobile ID management for context-
aware services relying on heterogeneous mobile and wireless service and networks. Security goals
such as confidentiality, authenticity, and non-repudiation are addressed by the particularly
trustworthy design and implementation of open-source and web service-based mechanisms,
enriched by ontologies and semantic resolution techniques.

The second approach reflects a coherent no-trust context-locked separation through virtualisation of
devices and people.

LinkSmart has refined a security and trust model. Multiple different virtualisation models with
different security models are assumed and mapping of interfaces will be carried out and considered
in the overall architectural model.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 10 of 89 Submission date: 2011-11-30

4. LinkSmart Architecture

The software architecture described is an abstract representation of the LinkSmart middleware. The
architecture is a partitioning scheme, describing components and their interaction with each other.
Figure 1 gives a structural overview of the LinkSmart middleware and explains how the elements are
logically grouped together. “LinkSmart managers” constitute the major building blocks that make up
the LinkSmart middleware. A LinkSmart manager encapsulates a set of operations and data that
realise a specific functionality.

Figure 1: Structural Overview on the LinkSmart Managers

The LinkSmart middleware offers a large collection of reusable core software components to experienced

developers. Based on these software components, programming abstractions allow for programming with

well-known concepts from the field of pervasive and ambient computing through reducing the details of the

underlying implementation. From the bottom to the top of Figure 1 the LinkSmart middleware provides more

and more programming abstraction and functionalities for the developers:

• The Network Manager implements Web Services over JXTA as the Peer-to-Peer model for

device-to-device communication.
• The Device and Device Service Manager in a bundle implement a service interface for a

physical device, handle several service requests and manage the responses.
• The Application Device Manager provide programming interfaces and information for the

different devices to the software developers.
• The Discovery Manager automates and facilitates the discovery of devices in a LinkSmart

network.
• The Ontology Manager is used by the Application Device Manager to get meta-information

about devices and also semantically resolves what type of device has been discovered.
• The Event Manager provides a topic based publish-subscribe service in LinkSmart.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 11 of 89 Submission date: 2011-11-30

• The Crypto, Trust and Policy Manager take care for cryptographic operations, the evaluation

of trust in different tokens and the enforcement of access control security policies.
• The Data Acquisition Component retrieves the data delivered by the LinkSmart devices and

ensors (via push or pull mode).
• The Quality-of-Service (QoS) Manager in LinkSmart is a component that accesses and

particularly processes all non-functional properties-data for services/components, devices,
and networks.

• The Self* Manager provides support for automating application management.
• The Context Manager allows for the definition of an application-dependent context model.
• The Storage Architecture realises the persistent storage of information in LinkSmart

middleware.

4.1 Device Classification

The LinkSmart middleware is designed to handle all types of devices, with varying capabilities. The figure
below, demonstrates how devices are classified into different categories, based on what technologies they
can support, which determines how the device can become "IoT-enabled".

Figure 2: Flowchart for the device classification process

The significance of the D0--D4 categories is that devices within each category are handled in the same way
in relation to the LinkSmart middleware and the enabling process. For further details on LinkSmart
terminologies please refer to the Glossary section in chapter 10.

Category-D0 devices are used with a proxy, that is, they can only be reached through a proxy-service
residing on a Category-D4 device. The proxy service must implement the communication with the D0 device.

Category-D1 devices can host a web service, and the intention is that such embedded web services are
created with the Limbo tool.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 12 of 89 Submission date: 2011-11-30

Category-D2--D4 devices are said to be LinkSmart enabled. LinkSmart enabled devices host the network
manager and all other managers needed for that device, but differ in their networking capabilities.

4.2 Applications and Devices

LinkSmart applications are built by controlling and using networked ambient intelligent devices. Devices are
made programmable by the LinkSmart middleware thru proxies as well as by embedded components.
Whatever the method, it is transparent to application developers, as they access all devices based on a pure
service and event based programming model. The API of this programming model is manifested by the
LinkSmart SDK, for application development.

4.3 Applications

An application in LinkSmart is built around a DAC (a Device Application Catalogue) which functions as a kind
of device registry, holding references to the set of devices which have been discovered and are available to
the application.

LinkSmart provides different levels of configuration, depending on the application requirements. A minimal
configuration for a LinkSmart application consists of an Application Device Manager, and a Network Manager
running on a LinkSmart gateway device (aka D4 device), to which one or more other devices are connected
or can be connected.

The minimal configuration can be extended by an Ontology Manager, which will add semantic discovery
capability to the system. Additional functionality for context management and security can be obtained by
the corresponding managers.

4.4 LinkSmart Devices / Device Proxies

A basic idea in LinkSmart is to differentiate between the physical devices and the application’s view of the
device, in terms of so called IoT Devices (Internet of Things). A IoT Device is the software representation of
a physical device. This representation is either implemented by a proxy running on a gateway device, or, by
embedded LinkSmart managers on the actual device. A IoT Device is said to IoT-enable a physical device.

There are five categories of Web Services generated for a IoT Device,

• A Generic IoT web service, exposing metadata and management functions common to all
LinkSmart Devices.

• An Energy web service, providing a set of functions for the monitoring and control of energy
consumption of devices.

• A Memory Service which allows logging and storing of device internal data such as state variables
and energy consumption data.

• A Location Service which can be used to query the device about is location and position.

• A device type specific web service, exposing the device type specific functions.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 13 of 89 Submission date: 2011-11-30

5. LinkSmart Technologies

This section summarises the technologies that LinkSmart utilises.

5.1 Java

Java is the core programming language of the LinkSmart Middleware, as it offers “write once, run anywhere”
benefits. Using Java, the Network Manager can run on any Java enabled operative system. The Java J2SE
can be run on almost any OS; therefore, LinkSmart can be deployed on these OS also. The problem of Java
is the resources (memory and processor) that it consumes. It is not a big problem in powerful devices such
as PC or Laptops, but in smaller devices, like PDAs or mobile phones it makes it almost impossible to run the
LinkSmart middleware on them.

5.2 OSGI

Most of the core components in the LinkSmart Middleware are implemented as OSGi plug-ins [1] because
OSGi offers a general-purpose, secure and managed Java framework that supports the deployment of
extensible applications (bundles), bundle life cycle management, service oriented architecture and easy and
quick deployment. Due to the use of OSGi in LinkSmart, deployment of all managers and proxies is simple
and quick and its life cycle can be easily managed, even remotely. OSGIs modularity offers the developers a
clean workspace where the managers can be dynamically deployed and un-deployed. Also, the service-
oriented foundations are suited for the software architecture that LinkSmart was aiming for. LinkSmart also
uses Remote-OSGi (R-OSGI) [2] which is an additional library that allows remote access to OSGi bundles. It
uses less effort than using Web Services when component is based on OSGi and “full access” is intended. It
is used mainly to connect the LinkSmart IDE to remote bundles for configuration and provides easy remote
access to LinkSmart components.

5.3 .NET

Although most components of the middleware are implemented in Java, some important ones suich as the
Discovery Managers and the Application Device Manager are also implemented using the .NET framework.
.NET provides good XML support and good development tools including cross process debugging. It has an
Extendable XSLT processor and fast managers with small memory foot print. Furthermore, LINQ [3] is a set
of extensions to the .NET Framework that extends C# with native language syntax for queries and provides
class libraries to take advantage of these capabilities [4].

There is also an extensive set of Device Managers available for .net, for instance for medical devices,
wireless sensor networks and home automation

5.4 Network

LinkSmart is based on various network technologies and concepts which are briefly described below.

5.4.1 P2P / JXTA

A P2P architecture was selected for carrying out the communications between LinkSmart components
(Inside LinkSmart Communications). The main benefits of a P2P architecture versus an old-fashioned client-
server one are its adaptability to very extensible networks, the responsibilities are distributed among peers;
it provides high availability and fault tolerance and enables the full usages of the bandwidth.

Among all the available P2P technologies, JXTA was selected as the most suited for LinkSmart. The reasons
that leaded to the selection of JXTA are:

• Interoperability: Enables communication between peers independently of network addressing
and physical protocols.

• Platform independence: JXTA does not depend on the programming language, network
transport protocols and deployment platforms, giving freedom of choice. Java SE and Java ME
implementations have been selected for LinkSmart.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 14 of 89 Submission date: 2011-11-30

• Ubiquity: JXTA is designed to be deployed on any device, not just PCs.

• Security: for security means regarding authentication, authorisation, and integrity can be
implemented based on JXTA. Attacks on the level of the protocol cannot be addressed, as that
would require changing the JXTA protocol.

• Community support: JXTA is supported by a wide community of developers and the different
specifications are fully documented.

• Wide range of services: Most of the P2P models studied have been designed exclusively for
providing file-sharing services. Instead, in JXTA, thanks to its abstract architecture based on six
protocols, it is possible and feasible to create a wide range of interoperable services and
applications.

Using P2P, LinkSmart solves the problems of traditional client-server architectures, providing communication
even when the different middleware instances are deployed behind firewalls and NATs. Therefore,
managers, devices and services can intercommunicate and interoperate.

Also, WS has been combined with P2P communications through a SOAP Tunnelling in order to enable access
to services and resources in a transparent way for developers. Using this SOAP tunnel, applications and
devices can interoperate transparently, even when they are located in different networks, isolated from each
other.

5.4.2 SOAP

Axis 1.4 for SOAP and Web Services provides a well working WSDL parser and generator and it can be easily
transformed into an OSGi bundle. In addition, it is compatible with the Limbo tool (see chapter6.3; Axis 2.0
is not fully compatible). Axis 1.4 provides interoperability for service provision and consumption. However,
the main problem with Axis 1.4 is the resources it consumes.

5.5 Security Technologies

Description of used security technologies used in LinkSmart are listed and described below.

5.5.1 XACML

XACML [6] is an OASIS [7] standard that establishes an XML-represented language for access control
policies, as well as access requests and responses. It defines a processing model, as discussed in the
introduction to this section. It has standard extension points for defining new functionalities, making it rather
flexible and extensible, and as such is perfect for integration into the LinkSmart middleware.

5.5.2 XML Security and Web Service Security

The Web Services Security specification (WS-Security) [8] enables Web Services developers to secure SOAP
message exchanges by providing them a set of mechanisms. WS-Security enhances existing SOAP
messaging which provides quality of protection. This is done by applying integrity and confidentiality to
messages and authentication to SOAP messages. Furthermore, WS-Security also provides a general
mechanism which helps in associating security tokens with messages. The good thing is that WS-Security
doesn’t require a specific type of security token. WSS is extensible and supports a variety of authentication
and authorization mechanisms.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 15 of 89 Submission date: 2011-11-30

6. LinkSmart Components

This section summarises all LinkSmart components by providing an overview regarding the functionality and
purpose of each component. Furthermore, the implementation of each component is described in detail
focussing on the technologies used and the reasons for choosing these technologies. The value each
component adds to the overall LinkSmart middleware is also discussed.

6.1 Network Manager

The Network Manager is responsible for network management. It is in charge of providing a transparent
view of the nodes in the application and to route the data to the appropriate node (high-level view shown in
Figure 3). Network communications are traced with a session mechanism. Furthermore, it takes advantage
of the peer-to-peer architecture to create a LinkSmart overlay network and to allow the discovery of other
IoT-enabled devices. It also handles the HIDs (LinkSmart IDs) of the nodes in the application. Finally, it is in
charge of synchronizing the nodes in the network with referential time. In this way the Network Manager
creates the “local” Internet of Things upon which the application can operate.

The Network Manager is the bottom layer of the LinkSmart middleware deployed in gateways and in
LinkSmart-enabled devices. It is the entry and exit point of information of the LinkSmart middleware. There
is only one Network Manager per device where the middleware is deployed. The Network Manager provides
a web service interface which is the information entry point for the middleware. Data transferred between
LinkSmart-enabled devices and gateways should always pass through the Network Manager.

Therefore, the main functions of the Network Manager are to provide a unique entry point for the network
communications, support session mechanisms, create a peer-to-peer based overlay network, provide HID to
nodes at application level, handle a list of the network members, allow discovery of other Network Managers
and synchronise network with referential time.

The Network Manager is based on P2P and SOAP tunnelling combined with Web Services. The Network
Manager builds an overlay P2P network as can be seen in Figure 4:

Figure 3: Network Manager overlay P2P network

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 16 of 89 Submission date: 2011-11-30

Figure 4: Basic LinkSmart network compared with physical network

6.1.1 HIDs and their management in Network Manager

The network manager allows services to be registered and made available through the LinkSmart Network
with the use of LinkSmart IDs (HIDs). Each service from a device is registered in the local Network Manager
and a unique context-dependant LinkSmart identifier (HID) is assigned to it. This does not depend on
routing or network infrastructure, it can be kept even if the endpoint changes (mobility). The Network
Manager provides the mechanisms for creating, modifying and deleting HIDs and ensures uniqueness. In
order to register a service, the device (or proxy) provides a local endpoint of the service, an optional short
description, and an optional Context or super context. The Network Manager maintains a data structure
called IDTable with HID Info of services registered on it as well as HID Info (not the endpoint) of remote
services registered on other Network Managers in the network.

6.1.2 Other Network Manager Functionalities

A PEP (Policy Enforcement Point) is integrated in the Network Manager in order to enforce policies
associated with HIDs (or crypto HIDs). The enforcement is performed before the service invocation. SOAP
Tunnelling is done over BT and UDP by implementation of new Network Manager transport mechanisms (BT
and UDP) for SOAP message delivery for last-mile communication (gateway<->device). Protocol switching is
made possible by changing the endpoint for a service (HID) in order to switch between communication
technologies -> TCP / UDP / BT. The Network Manager is an OSGi R4 compliant bundle and a Network
Manager Service is exposed both through WS and OSGi service. Furthermore, the Network Manager is UPnP
AV compliant and incorporates Inside LinkSmart Security, multimedia content exchange, and a separate
communication mechanism based on P2P for multimedia content.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 17 of 89 Submission date: 2011-11-30

6.2 Event Manager

The LinkSmart Event Manager provides publish/subscribe functionality, i.e., the ability for publishers to send
a notification to multiple subscribers while being decoupled from them (in terms of, e.g., not holding direct
references to subscribers). In general, publish/subscribe communication provides an application-level
selected multicast that decouples senders and receivers in time, space, and data (i.e., sender and receivers
do not need to up at the same time, do not need to know each other's network addresses and do not need
to use the same data schema for events they send). The specific variant of publish/subscribe implemented is
topic-based publish/subscribe where key/value pairs represent events. With this approach, any subscriber or
publisher defines a topic simply by executing the “publish” or “subscribe” actions.

The Event Manager is used in any place where there is a potential many-to-many relationship between
senders and receivers and where asynchronous communication is desirable. In particular, the Application
Event Manager provides subscription support by allowing clients to subscribe to published events via a topic-
based publish/subscribe scheme, publication support by allowing client to publish event on topics. The Event
manager routes events to subscribed clients and assists in interfacing to the Network Manager (e.g.,
broadcast-, multicast-, or gossiping-based dissemination). The Event Core manages persistent subscriptions
and publication to subscription matching etc. The Event Manager allows sending and receiving events
through the LinkSmart P2P network.

Both the Event Manager and Resource Manager are programmed from scratch within LinkSmart, without the
use of third party components beyond the standard Java libraries. All components make use of OSGi. The
use of Java technology for all components was chosen because of the experience available in this language.
Additionally, there is a wide selection of open source third party libraries in Java. OSGi was chosen because
of the modularity possibilities it affords.

6.3 Trust Manager

The Trust Manager can be used to verify if a token offered by an entity is trustworthy. The term “trust” is
used in a very technical meaning: "trust" indicates that the likelihood of an entity being the legitimate owner
of a key inside a token. The methodology by which this likelihood is determined is called a "trust model". A
trust model is an algorithm that takes a token as input and returns a trust value as output. Although this
interface appears to be very simple, the process behind can be arbitrarily complex. The most common trust
models like Public Key Infrastructure (PKI) or Web of Trust (WoT) may require sophisticated checking of key
chains.

Instances of the Trust Manager are used in several places inside the LinkSmart architecture. It is a useful
tool for an application developer to verify application layer certificates, but it is also an important component
for middleware layer security. Thus a device developer has to integrate the Trust Manager in a device in
order to support device certificate management for the secure middleware communication protocols.
Alternatively, device software can interact with the Trust Manager as an external certificate verification
service if the computational power of the device is insufficient to run a Trust Manager. Therefore the Trust
Manager offers its functionality as a web service. In this case, the communication between device and Trust
Manager has to be protected using the Core LinkSmart security mechanism or by other device specific
means. The Trust Manager acts as an interface to arbitrary trust models, for example Public Key
Infrastructures (PKI), Web of Trusts (WoT) or reputation-based trust models. Which specific trust model
should be used depends strongly on the application context the device will be used in and cannot be
predetermined.

Thus the Trust Manager implements not a specific trust model but rather provides an interface so that
different models can be used without requiring any change on the program code. A device developer can
use one of the preconfigured trust model, which are currently X.509 PKI, OpenPGP (Web of Trust), or a null-
model (trust every certificate, for development). Furthermore developers are free to implement their own
trust models and are able to add their model only by changing a configuration file. During runtime, the trust
models can be selected and configured via a web service if the device developer wants to open this
functionality.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 18 of 89 Submission date: 2011-11-30

6.4 Crypto Manager

The Crypto Manager is a stand-alone manager providing various cryptographic operations such as
encryption, key management and handling of digital signatures. The main functionalities of the Crypto
Manager are to protect messages, encrypt, sign, decrypt, verify signatures, wrap data in different message
formats, receive protected messages, manage keys, generate public/private key pairs with or without
persistent identifiers contained, generate symmetric keys, and store public keys (certificates) as well as
symmetric keys.

The Crypto Manager is basically used in two ways. On the one hand, the Crypto Manager is automatically
used by an internal part of the LinkSmart middleware – such as the security modules in the Network
Manager. Therefore it provides cryptographic operations as an internal part of the middleware. For example,
in case a device is about to join a LinkSmart security domain, a secret shared key has to be agreed between
the device and the initiator of the domain (the “domain controller”). This functionality is located in the
Crypto Manager, so it has to be attached to the Network Manager (either via web service calls or, better,
directly as an OSGi bundle). This way, it is very easy to exchange sensitive cryptographic operations at a
later time without touching any other components.

On the other hand, the Crypto Manager can be used by application developers via its web service interface
as a stand-alone component for key management, and the creation of protected messages, thereby allowing
building of secure storage solutions or communication protection at application layer.

The Crypto Manager provides its methods as a Web Service as well as an OSGi service. It is strongly
recommended to use the Crypto Manager over a connection that is not prone to eavesdropping and
modification. That is, recommended ways to use the Crypto Manager are either locally as an OSGi service or
remotely over a channel that has been protected by Core- or Inside LinkSmart mechanisms, for example.

6.5 Access Control Policy Framework

The Access Control Policy Framework, in the LinkSmart Middleware, is an implementation of the XACML
(eXtensible Access Control Mark-up Language) processing model [6]. It adds the functionality to be able to
protect LinkSmart devices and services from unauthorised access, at the network level. The XACML
Processing Model consists of four main components:

• Policy Enforcement Point (PEP)
o Intercepts the call before it reaches the resource, and formulates an access request

using the known information about the involved entities. Sends the request to the PDP.
Enforces the decision returned, and may perform any obligations returned.

• Policy Decision Point (PDP)
o Makes a decision on the access request, again the repository of policies it holds. The

decision is returned to the PEP.
• Policy Information Point (PIP)

o Resolves attributes referenced in a policy, that aren't featured in the access request.
• Policy Administration Point (PAP)

o Provides the point of administration for authoring, publishing and managing XACML
policies on a PDP.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 19 of 89 Submission date: 2011-11-30

Network

Manager

Network

Manager

PEP

PDP

PIP

Subject

Policy

Database

PIP Source

Resource ContextSubject Context

Decision Context

Network

Manager Resource

PAP

Figure 5: Access Control Policy Framework

Figure 5 above shows the architecture of the Access Control Policy Framework in LinkSmart. As described in

6.1, communication between Subject and Resource is routed through the Network Manager and Soap
Tunnelling, with the Network Manager of the Resource Context being that which hosts the Resource service
on the LinkSmart network, which can forward the request to the resource. Before doing so, it must request
an access decision, passing all credentials of the request to the PEP.
This includes:

• Subject and Resource HIDs
• Method being called
• Session ID
• CryptoHID attributes of Subject and Resource

The PEP formulates this information into an XACML Request Context document, which is then sent to the
PDP for a decision to be made. It should be noted that the PDP may or may not be local to the PEP. In the
case where the PDP is remote, communication between the PEP and the PDP is again routed through the
Network Manager.

Upon receiving the request, the PDP attempts to retrieve any relevant policies from the Policy Repository,
which is a local XMLDB. The request is evaluated, which may involve retrieving additional information using
a PIP, and a response returned with a decision and possibly a set of Obligations. The possible decisions
returned are:

• Permit - Access granted
• Deny - Access denied
• Indeterminate - A decision could not be made, potentially due to an error in evaluation
• NotApplicable - No relevant Policy was found for a decision to be made

When the PEP receives the response, it handles any obligations returned, and returns the decision to the
Network Manager, as the PEP itself does not have the power to technically enforce the decision itself, but
relies upon the Network Manager to perform this role.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 20 of 89 Submission date: 2011-11-30

The final component of the Access Control Policy Framework is the PAP that provides the interface for
authoring, publishing and managing XACML policies on a PDP. In LinkSmart, this is implemented with the
Access Control Policy IDE - a component of the LinkSmart IDE.

The PDP uses an XML Database for storing policies published to it, as XACML policies are defined by XML
anyway, and the ability to use XPath and XQuery queries to retrieve relevant policy(s) from the database
make for a much more efficient system, as opposed to iterating through policies for matches. The database
used is eXist XMLDB [9].

6.5.1 XACML

XACML is an OASIS [10] standard that establishes an XML-represented language for access control policies,
as well as access requests and responses. It defines a processing model, as discussed in the introduction to
this section. It has standard extension points for defining new functionalities, making it rather flexible and
extensible, and as such is perfect for integration into the LinkSmart middleware.

The Access Control Policy Framework in LinkSmart is based upon the XACML implementation by Sun
Microsystems [10], which is the commonly used XACML implementation in Java. It provides the core
components of XACML, with all the core subset of XACML data types, functions and algorithms implemented,
and is designed to be as easily extensible as the XACML standard itself. The Sun implementation is based on
the XAML 1.x specification, with some components of XACML 2.0. XACML 3.0 is still in the drafting phase.

<?xml version="1.0" encoding="UTF-8"?>
<Policy PolicyId="ExamplePolicy"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:ordered-permit-overrides">
 <Target>
 <Subjects>
 <AnySubject/>
 </Subjects>
 <Resources>
 <Resource>
 <ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">MyResource
 </AttributeValue>
 <ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="LinkSmart:policy:resource:pid"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">doSomething
 </AttributeValue>
 <ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 <Rule RuleId="OnlyAllowMySubject" Effect="Permit">
 <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
 <SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
 AttributeId=" LinkSmart:policy:subject:pid "/>
 </Apply>
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">MySubject
 </AttributeValue>
 </Condition>
 </Rule>
 <Rule RuleId="CatchAllDeny" Effect="Deny"/>
 </Policy>

Listing 1: A simple XACML Policy

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 21 of 89 Submission date: 2011-11-30

The listing above shows a simple XACML 1.x policy, that protects the "doSomething" method of a resource
with a PID of "MyResource", against access from anything but a caller with a PID "MySubject".

As mentioned in the introduction to this section, the Access Control Policy Framework has its main point-of-
entry to the LinkSmart Middleware at the Network Manager level, advising the Network Manager on what
action to take when it receives a call to one of its hosted services. The other main point of interaction is
through the use of PIPs.

The LinkSmart PDP is designed to be extensible, to easily allow for new functionality to the PDP through
adding additional PIP components, which includes the ability to resolve certain attributes, add additional
functions that can be used in policies, add new data types, and so on.

PIPs, as with all components in the Access Control Policy Framework, are implemented as OSGi bundles,
implementing an interface exposed by the PDP such that it is very easy to add new PIPs.

6.6 Obligation Framework

The Obligation Framework in LinkSmart, is a realisation of the event-condition-action (ECA) policies, using
some advanced techniques like semantic reasoning, complex event processing (CEP) and enforcement
monitors to increase the benefits of the policy framework. The purpose of these policies is manifold:
Obligation policies shall help developers in setting up a LinkSmart-based system that automatically adapts its
settings and implementations upon context changes (including, but not limited to security settings). Further,
they shall complement the access-control policies by adding more expressiveness than simple permit/deny
decisions. Last but not least, obligation policies can be defined by end-users (meaning: users of the
LinkSmart application) in order to define the behaviour of their devices depending on different situations.

In XACML, it is possible to specify an obligation element for each policy and define whether the obligations
contained within must be executed upon a deny or permit decision [8]. So, once the PDP has evaluated an
access request, it will send the decision to the PEP, along with the set of obligations of the policy. The PEP
must then wait for the PDPs decision, enforce the decision and execute the obligations. The purpose of
these XACML obligations is mainly to add some additional actions to plain permit/deny decisions, such as
logging all accesses or sending an email to the administrator if access to a certain resource is denied. That
is, obligations in XACML can only be sent out as the result of an access request – spontaneously instructing
a LinkSmart device to execute an action that has become necessary because of a change of the current
situation is not possible, for example. Further, it cannot be defined who shall execute the obligation. In
XACML, it is always the PEP that received the access request who has to enforce the obligation. Further,
there is no way for the PDP the monitor whether the obligation was actually enforced, so the PEP has to be
trusted by the PDP (which is of course always the case, in a typical XACML set-up).

With the Obligation Framework, an obligation can be triggered by any pattern of arbitrary events (e. g.,
sensor data, middleware events or user interactions). That is, in contrast to XACML, obligation policies are
enforced asynchronously. The obligation is then sent to different obligation enforcement points (OEP) that
can be located anywhere in the system (as long as they are listening to events from the LinkSmart Event
Manager). Furthermore, it is possible to register enforcement monitors in the framework – components to
monitor whether an obligation has been executed as requested or not.

So, to summarise, an obligation in XACML is different from obligation policies as supported by LinkSmart.
Both have been designed for different purposes and they rather complement each other than they compete.
Below, we will also show how both features can be used to integrate the obligation policy framework with
the access control framework.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 22 of 89 Submission date: 2011-11-30

 XACML LinkSmart

Triggered By Only access requests Arbitrary event patterns

Location of
enforcement

PEP that intercepted
the access request

Arbitrary OEPs

Enforcement
monitoring

No Possible

Granularity

At policy level Arbitrary. At rule level

Table 1: Differences between XACML and LinkSmart obligations

6.7 Discovery Manager

The Discovery Manager is responsible for low level physical discovery of new (existing) IoT devices using
native protocol. It creates a proxy and wraps physical devices with UPnP objects and publishes them onto
the network. The Application Device Manager manages all knowledge, metadata and information regarding
devices that have been discovered and are active in the LinkSmart network. The Discovery Manager assigns
a device type to the device based on Device Ontology, returns service interface for the device, handles
device virtualization (semantic devices) and semantic device aggregation, and manages the Device
Application Catalogue (DAC;). The Discovery Manager also controls a set of several Discovery Managers that
are available for example, the Bluetooth Discovery Manager, the RFSwitch Discovery Manager, the SerialPort
Discovery Manager, the External Discovery Manager, the UPnP Discovery Manager etc.

The Discovery Manager also adds LinkSmart Services to a physical device. LinkSmart Services (generic
functions) can be in the form of Energy Services, Location Services, Storage Services, Context Services etc.
The Device Application Catalogue (DAC) is a catalogue of the currently accessible devices. It provides a
graphical DAC browser as a complement to the SDK/API and also provides search interface to DAC. Device
XML is the XML structure that encodes all data and meta-data about a device. It can include properties
specific to UPnP, the LinkSmart system and/or developer defined properties. A graphical DAC browser is
used to look at device XML.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 23 of 89 Submission date: 2011-11-30

Figure 6: Device Application Catalogue – Graphical View

6.8 Security Library

This chapter deals with the mechanisms to protect messages which are exchanged between LinkSmart
Managers. It also describes managers which are used to support the security mechanisms and which also
provides functionalities to the LinkSmart developers, who want to use cryptographic functions in their
LinkSmart applications.

 Core LinkSmart

A single LinkSmart-enabled device can be distributed across many physical machines. In that case, internal
parts of this LinkSmart device communicate over a public network, e.g. the internet. To protect this kind of
internal communication, the Core LinkSmart security mechanisms are in place. Core LinkSmart security is
based on symmetric keys that have to be generated by the device developer and must be deployed to each
manager of the LinkSmart device. The implementation of the Core LinkSmart module is integrated into the
Network Manager in the form of an Axis handler.

 Inside LinkSmart

The Inside LinkSmart approach is based on public and private key pairs. Therefore, other considerations as
in Core LinkSmart come into effect. Issues have to be solved for validating certificates, handling tokens,
verifying signatures and token creation, storing and deletion. Due to the fact that a HID can change, we
consider generating certificates on the fly, which then will be exchanged among the communication
partners. The dedicated TrustManager is engaged in the verification of these generated certificates. The
deletion of such a certificate is also due to the act that an HID of a counterpart is no longer valid.

6.9 Security Design

To secure messages between Network Managers over the insecure network, we use the Web Service
Security (WSS) to secure messages (Strings), similar to Core LinkSmart. The main differences are the
handling of security tokens (i.e., X509 certificates or other tokens used by other trust models).

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 24 of 89 Submission date: 2011-11-30

Another aim of this Security Library is also to provide an interface for different security mechanisms. The
developer will have the possibility to use any library which supports our envisaged interface; his can also
mean that the developer can, e.g., plug in a different security library, which suits his needs.

The integrity and non-repudiation of messages will be achieved by the use of signatures. Due to the fact
that HIDs can change and communication Partners (Network Managers) are previously unknown to each
other, considerations like token generation and token exchanging must be taken into account.

The dedicated Trust Manager is used to verify the integrity of these tokens by verifying the certificates which
are used by the Network Managers. A trust level can be set up by the developer which will be used to
evaluate the trustworthiness of a generated and used certificate. Also different trust models can be used,
which is also configured by the developer. Trust models can make use of a Public Key Infrastructures, of
Web of Trust mechanisms, or even an interaction by the user.

Every time a new communication is initialized the Network Manager generates its own certificate which will
be shared via a handshake mechanism, described below, between the different Partners. For the time of
communication they will be stored in each involved manager's key store. Certificates can also be deleted
after a certain time, i.e. when a HID is dropped or is no longer valid. That means for every HID there will be
a generated public/private key pair.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 25 of 89 Submission date: 2011-11-30

7. Installing the LinkSmart Middleware

This chapter discusses the requirements for installation of the LinkSmart Middleware, using the Equinox
(Eclipse) implementation of OSGi. The LinkSmart Middleware will be provided as a stand-alone package
which can be run in any generic OSGi framework, not only depending on the eclipse IDE.

7.1 Prerequisites

Some bundles are not provided with Eclipse (Galileo - 3.5 and earlier), and so will need to be downloaded
and placed in the plugins folder of your Eclipse installation, if the LinkSmart Middleware is to be launched
from within the Eclipse environment, which is not compulsory.

Most significantly this may include

 org.eclipse.equinox.cm_1.0.100.v20090520-1800

 org.eclipse.equinox.ds_1.1.1.R35x_v20090806

7.2 Required Bundles

The following sections specify the various OSGi bundles required to launch the LinkSmart Middleware. This
includes both core bundles, and the bundles of LinkSmart Managers and components. The configuration
provided here is a very basic one, and extra LinkSmart bundles can be added to include their relevant
functionalities.
(Note: LinkSmart distribution now includes a dependency management, Apache Ivy, that should take care all
of the dependencies needed by Linksmart. It will download them automatically from the Spring Source
repository when ant is run).

7.2.1 Core required bundles

These external bundles have to be added in the run configuration:

javax.servlet_2.5.0.v200806031605

javax.xml_1.3.4.v200902170245

org.apache.commons.codec_1.3.0.v20080530-1600

org.apache.commons.httpclient_3.1.0.v20080605-1935

org.apache.commons.lang_2.3.0.v200803061910

org.apache.commons.logging_1.0.4.v200904062259

org.apache.log4j_1.2.13.v200903072027

org.apache.xalan_2.7.1.v200905122109

org.apache.xml.serializer_2.7.1.v200902170519

org.eclipse.equinox.cm_1.0.100.v20090520-1800

org.eclipse.equinox.ds_1.1.1.R35x_v20090806

org.eclipse.equinox.http.jetty_2.0.0.v20090520-1800

org.eclipse.equinox.http.servlet_1.0.200.v20090520-1800

org.eclipse.equinox.util_1.0.100.v20090520-1800

org.eclipse.osgi.services_3.2.0.v20090520-1800

org.eclipse.osgi_3.5.1.R35x_v20090827

org.mortbay.jetty.server_6.1.15.v200905151201

org.mortbay.jetty.util_6.1.15.v200905182336

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 26 of 89 Submission date: 2011-11-30

7.3 Crypto Manager Setup

The Crypto Manager requires some initial modification of the default Java distribution, in order to provide the
functionalities it requires.

How to register the global crypto provider:

1. In order to use the bouncycastle keystore and cryptographic keys longer than 128bit, the "JCE

unlimited strength policy files" (Download Java Cryptography Extension (JCE) Unlimited

Strength Jurisdiction Policy Files 6) needs to be updated. Copy local_policy.jar and
US_export_policy.jar to $JAVA_HOME/jre/lib/security (overwriting existing files).

(The following step should be optional. You should try it if you get a "KeystoreException: no match")

2. In order to make the bouncycastle crypto provider available for the whole OSGi framework, it

needs to be installed as a global java security provider

a. Copy lib/bcprov-jdk14-138.jar to $JAVA_HOME/jre/ext

b. In $JAVA_HOME/jre/lib/security/java.security, add bouncycastle to the available
crypto providers1:

 security.provider.5=org.bouncycastle.jce.provider.BouncyCastleProvider

7.4 LinkSmart bundles

Different steps to “install” LinkSmart bundles are described in the following:

Build the middleware using Ant

1. Check out LinkSmart middleware from Source Forge repository at:

 https://linksmart.svn.sourceforge.net/svnroot/linksmart/branches/1.1 .

2. Make sure have Ant installed. If you run the scripts inside your IDE, select the proper Ant distribution
by setting ANT_HOME.

3. Run the ant build script located inside the components folder. Ant will now download all
dependencies, build the LinkSmart Bundles, and put them in a folder named target_platform.

Set-up target platform

The target platform specified contains the bundles which your code will be compiled against. Having a target
platform allows you to compile and run your modified code without having to bring all of the source code
into your development workbench. The target platform should be the same platform you are developing for.
To set up your target platform:

• From your development workbench select Window-> Preference-> Plug-in development-> Target
Platform.

• Select Add… and then Nothing option, hit Next.

1
 Don't set bouncycastle as the first provider. This is a known bug and won't work.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 27 of 89 Submission date: 2011-11-30

Figure 7: Configure Eclipse Target Platform

Give your target platform a name, e.g. LinkSmart and then add two different locations of the platform you
wish to target. For this tutorial select the content from the two following directories (see also screen shot
below):

• ${workspace_loc}/opensource/components/target_platform

• ${workspace_loc}/opensource/components/distribution

Figure 8: Add New Target Platform Location

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 28 of 89 Submission date: 2011-11-30

You can use the above links to the workspace directory IF you have ticked "Copy projects into workspace"
otherwise you have to manually select the proper directories! You can identify if this worked if there is a
number of plugins listed behind the directory path!

Hit Finish, and then Apply this new target platform instead of the default set running Eclipse workbench
platform.

These LinkSmart bundles have to be added in the run configuration:

CryptoManager_1.1.0

LinkSmartManagerConfigurator_1.0.0.qualifier

LinkSmartMiddlewareAPI_1.0.0.qualifier

LinkSmartMiddlewareClients_1.0.0.qualifier

LinkSmartWSProvider_1.0.0.qualifier

Network_Manager_Bundle_1.7.0.qualifier

Figure 9: Run Configuration (LinkSmart Bundles)

These bundles provide the basic functionality of the Network Manager with the CryptoManager.
Other bundles must be added as required.

7.5 VM Arguments

-Declipse.ignoreApp=true -Dosgi.noShutdown=true -Dorg.osgi.service.http.port=8082

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 29 of 89 Submission date: 2011-11-30

Figure 10: Eclipse Run Configuration (Arguments)

7.6 Running the framework

When the LinkSmart framework is started and 'ss' type in to see the list of installed plugins. It should look
like this (id numbers may be different, but the order of the bundles in which they start is vital):

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.5.1.R35x_v20090827

2 ACTIVE CryptoManager_1.1.0

3 ACTIVE org.apache.log4j_1.2.13.v200903072027

4 ACTIVE javax.servlet_2.5.0.v200806031605

5 ACTIVE org.eclipse.equinox.util_1.0.100.v20090520-1800

6 ACTIVE org.apache.xml.serializer_2.7.1.v200902170519

7 ACTIVE org.eclipse.equinox.http.jetty_2.0.0.v20090520-1800

8 ACTIVE org.mortbay.jetty.server_6.1.15.v200905151201

9 ACTIVE LinkSmartMiddlewareAPI_1.0.0.qualifier

11 ACTIVE org.eclipse.equinox.ds_1.1.1.R35x_v20090806

12 ACTIVE LinkSmartManagerConfigurator_1.0.0.qualifier

14 ACTIVE org.eclipse.osgi.services_3.2.0.v20090520-1800

15 ACTIVE org.eclipse.equinox.cm_1.0.100.v20090520-1800

16 ACTIVE LinkSmartWSProvider_1.0.0.qualifier

17 ACTIVE javax.xml_1.3.4.v200902170245

18 ACTIVE org.mortbay.jetty.util_6.1.15.v200905182336

19 ACTIVE org.apache.commons.lang_2.3.0.v200803061910

21 ACTIVE org.apache.xalan_2.7.1.v200905122109

22 ACTIVE Network_Manager_Bundle_1.7.0.qualifier

23 ACTIVE org.apache.commons.logging_1.0.4.v200904062259

24 ACTIVE org.eclipse.equinox.http.servlet_1.0.200.v20090520-1800

25 ACTIVE org.apache.commons.httpclient_3.1.0.v20080605-1935

26 ACTIVE LinkSmartMiddlewareClients_1.0.0.qualifier

27 ACTIVE org.apache.commons.codec_1.3.0.v20080530-1600

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 30 of 89 Submission date: 2011-11-30

Useful URLs

Go to http://localhost:8082/NetworkManagerStatus, It should show something like this:

Figure 11: Network Manager Status page in browser

Go to: http://localhost:8082/LinkSmartStatus, It should show something like this:

Figure 12: LinkSmart Status page

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 31 of 89 Submission date: 2011-11-30

Go to: http://localhost:8082/axis/services, It should show something like this:

Figure 13: List of services (in browser)

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 32 of 89 Submission date: 2011-11-30

8. Software Development Kit

This chapter provides and introduction to the Software Development Kit (SDK) in LinkSmart, detailing the
software interfaces (Web Services etc.) of each LinkSmart component / manager / tool, and tutorials on how
to use them.

8.1 LinkSmart Commons

The LinkSmart Commons set of bundles provides the main point of interaction between the developer and
the SDK. The commons bundles include:

• Middleware API

• Clients

• Configurator

These bundles make it simpler for the developer to use the managers and components of the LinkSmart
Middleware, as well as for the creation of applications.

8.1.1 LinkSmart Middleware API

The LinkSmart Middleware API bundle contains the LinkSmart API, that is, all external interfaces of the
LinkSmart managers and the types used in them. In that way, there is one common bundle containing all
relevant LinkSmart interfaces, separating them from their implementation, which is necessary for a well-
structured integrated middleware. This also includes the classes for the various types that act as parameters
for calls to middleware components, as well as a set of utilities to aid with usage.

Use of the Middleware API for particular components is discussed in the sections relevant to each
component. Typically, this also involves the LinkSmart Middleware Clients bundle, as described in the
following section.

8.1.2 LinkSmart Middleware Clients

The LinkSmart Middleware Clients bundle contains all the Web Service clients for calling the various
managers and components of the LinkSmart Middleware. These clients include the generated AXIS files for
the creation of Web Service Clients, providing the services as defined in the LinkSmart Middleware API. The
middleware clients are located in bundles named as follows:

Using the Event Manager as an example, the developer can generate the Event Manager client in one of two
ways. Firstly, by using the generated Locator class for each client, as shown below:

EventManagerPortServiceLocator locator =

 new EventManagerPortServiceLocator();

locator.setEventManagerPortEndpointAddress(endpoint);

EventManagerPort em = locator.getEventManagerPort();

em.subscribe("ExampleTopic", "0.0.0.235235154145");

Here, the locator is configured with an endpoint address. This is the address of the local SOAP Tunnel
(exposed by the Network Manager), specifying the from and to HIDs, as well as the sessionID. An example
endpoint is given below, with no sessionID (0).

http://localhost:8082/SOAPTunneling/0.0.0.341243145454252/0.0.0.412434465875/0/

The second method is to use the RemoteWSClientProvider OSGi service that allows retrieval of the relevant
manager objects without the need to create specific Web Service Locator objects. This service offers a
method, called getRemoteWSClient, which interface is:

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 33 of 89 Submission date: 2011-11-30

public Object getRemoteWSClient(String className,

 String endpoint, boolean coreSecurityConfig);

When calling the method, the interface class name of the Web Service, the endpoint to this Web Service and
a Boolean value indicating whether we want to call the service with LinkSmart security or not must be
provided.

The next lines show an example of calling a method of the Network Manager Web Service. The developer
first obtains a RemoteWSClientProvider element, and via this Web Service Client object finally makes the call
to the desired method of the Network Manager (in this case getHIDs).

RemoteWSClientProvider service = (RemoteWSClientProvider)

context.getService(context.getServiceReference

(RemoteWSClientProvider.class.getName()));

NetworkManagerApplication nm = (NetworkManagerApplication)

service.getRemoteWSClient(NetworkManagerApplication. class.getName(),

endpoint, true);

Vector v = nm.getHIDs();

8.1.3 LinkSmart Configurator

In order to achieve high level of integration between the set of managers that conforms the LinkSmart
Middleware, a common configuration system for all LinkSmart managers and applications has been
implemented.

This common configuration system is based on the use of the configuration admin OSGi service. This service
provides a way to update dynamically the configurations, avoiding having to restart the managers for
updating them. It also provides persistency for the configurations.

Thus, an OSGi bundle which provides a common interface for the configuration of all LinkSmart managers
has been implemented. The bundle is called LinkSmart Manager Configurator. Adapting the configuration of
a particular manager is achieved using the Configurator class provided by the LinkSmart API. The
Configurator class is a class that implements the ManagedService interface, so that it can receive
configurations from the configuration admin OSGi service. The Configurator class provides the methods and
attributes for managing the configuration of the manager which instantiates it, and a way for communicating
with the configuration admin service in order to apply into this service all changes introduced by the user at
the Configurator class, registering itself as a managed service.

The LinkSmart Manager Configurator bundle provides a set of interfaces that allows modifying the
configuration of the different LinkSmart managers previously adapted to the new common configuration
system. This bundle provides three interfaces for configuring LinkSmart managers:

• A web application called LinkSmart Status
• A Web Service deployed by the LinkSmart Manager Configurator
• An OSGi console command, currently working on Equinox

The LinkSmart Status page (Figure 14) is a web application that provides a web interface for configuring
the different local LinkSmart managers adapted to the new common configuration system, based on the
configuration admin OSGi service. It also provides all the information provided by the well-known Network
Manager Status page and Event Manager Status pages.

Regarding the Network Manager information included, the LinkSmart Status page provides information about
HIDs, hosts where they are deployed, descriptions and endpoints of all devices detected by the local
Network Manager, differentiating between local and remote HIDs (local and remote Network Manager
installations).

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 34 of 89 Submission date: 2011-11-30

Regarding the Event Manager information included, the LinkSmart Status page provides information about
the topics, the endpoints and the dates of subscription of all the LinkSmart events the local Event Manager is
subscribed to.

Regarding the configuration of the managers, the LinkSmart Status page provides a graphical interface for
configuring all LinkSmart managers adapted to the new common configuration system in a dynamic way.
The available sets of configuration options are loaded dynamically if the manager which uses them is
running, identifying themselves by their configuration PID. Clicking over a configuration PID, all its options
and their values will be loaded, being possible to modify them and update the modifications done by clicking
the Update Configurations button.

Once you update the configuration, the new configuration will be working at the moment, without having to
restart the managers. However, if you put –clean parameter inside program arguments of your OSGi
configuration all updated configurations will be reset to their initial state. The URL of the LinkSmart Status
page (a screenshot of the service can be seen in Figure 14) is http://localhost:8082/LinkSmartStatus,
(given that the web server of the LinkSmart installation is running in the 8082 port, which is the default port
of the LinkSmart configuration). This functionality is also replicated inside the IDE, as discussed in the
relevant section(s).

Figure 14: LinkSmart Status page screenshot

Another configuration tool provided is the Web Service, which is deployed by the LinkSmart Manager
Configurator bundle, and that provides the following methods:

• getAvailableConfigurations(): list the available set of configurations.
• deleteConfiguration(String configuration_pid): delete a concrete configuration from the common

configuration system.
• listConfiguration(String configuration_pid): list the options provided by a concrete configuration

and their current values.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 35 of 89 Submission date: 2011-11-30

• setConfiguration(String configuration_pid, String option_key, String value): set the value of a
concrete option for a concrete configuration.

Finally, and regarding the configuration tools using Equinox OSGi console, the configure command is used,
which provides similar options as the ones provided by the Web Service above. These options are the:

• configure –l: list the available set of configurations.
• configure –d <configuration_pid>: delete a concrete configuration from the common

configuration system.
• configure <configuration_pid>: list the options provided by a concrete configuration and their

current values, e.g. configuration com.eu.LinkSmart.network will print current configuration of
the Network Manager.

• configure <configuration_pid> <option_key> <option_value>: set the value of a concrete
option for a concrete configuration.

8.2 Network Manager

The network model complements the runtime platform model regarding the details of the network. In
LinkSmart the underlying network is complex and therefore, it needs to be described in a separate (but
related) network model. The purpose of the network model is to define what types of network connections
will be supported and if there are constraints that have to be adhered to during implementation and network
design.

8.2.1 LinkSmart Definition of Device To Device Communication

The Network Manager is the incoming and outgoing point of information in the middleware. Therefore, the
main purpose of Device to Device communication will be managing the communication between Network
Managers. This means that only LinkSmart-enabled-devices will be involved in this kind of communication.

Devices inside LinkSmart need to communicate in order to exchange information. Each device offers
different resources inside the LinkSmart network mechanisms need to be implemented that allow the
discovery of such new resources in LinkSmart-enabled devices inside the network. Moreover, in order to
consume these resources, LinkSmart devices need the means to establish communication between each
other. The following sections will present those aspects.

Addressing

From the middleware point of view, an addressing method based on LinkSmart Identifiers (HID) has been
defined for LinkSmart, instead of the usual IP-based one. The Identity Manager is responsible for the
management of these HIDs. Its main functionality is providing a unique context-dependant identifier for
every device (physical or semantic), resource or service, called HID. It is also responsible for the
maintenance of the idTable, a data structure dedicated to store the matching between logical and physical
identifiers.

However, this addressing is useless if there is not a way to propagate this information to other IoT-enabled
devices involved in the LinkSmart Network. The Backbone Manager, a component inside the network
manager, is responsible for spreading this information between the different IoT-enabled devices in the
network. Thus, every Identity Manager belonging to the LinkSmart Network internally keeps an idTable and
an updated list of every HID in the network. This process is known as Network Manager Discovery.
The LinkSmart middleware will be running in dynamical environments, where new resources are susceptible
to constantly appear or disappear. In order to detect new resources inside the LinkSmart network, we need
a discovery mechanism.

Inside the LinkSmart network, devices and resources are identified through a LinkSmart ID (HID), which
varies depending on the context. In order to contact them, one IoT-enabled device needs to contact the

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 36 of 89 Submission date: 2011-11-30

Network Manager of the IoT-enabled device they belong to. The discovery of Network Managers will be
done through Device to Device communication.

Through Device To Device communication, we aim to propose an innovative way to discover Network
Managers (and thus, LinkSmart-enabled devices) and also to know more about their features and services
provided, in a scalable Wide Area Network. This means that the scope of the LinkSmart network will not be
restricted to a Local Area Network.

 Communication

As mentioned before, the Network Manager is the incoming and outgoing point of information in the
middleware. The LinkSmart network is an “all-IP” network. This means that only devices with IP
communication capabilities will be able to communicate directly (through device to device communication)
inside the LinkSmart network.

Moreover, the device to device communication will be restricted to the LinkSmart-enabled devices that are
able to host the LinkSmart middleware, which in LinkSmart terms means that this communication will be
“inside” LinkSmart. Thus, the device to device communication can be defined as the data exchange between
devices “inside” LinkSmart network, which are LinkSmart enabled and have IP communication capabilities.

8.2.2 The Peer-to-Peer Network Architecture

There exist multiple objectives regarding device to device communication. First, the LinkSmart middleware
needs to offer an efficient way to share resources among the LinkSmart Network, in a scalable, distributed
and efficient way. The LinkSmart middleware also needs to prevent system failures when a node is not
available. And finally, the LinkSmart Network needs to allow ubiquitous access to the network.

All of these reasons have leaded us towards a Peer-to-Peer architecture. Several Peer-to-Peer models have
been analysed and according to the requirements identified for device to device communication, JXTA P2P
communication protocols have been selected as the most suitable mechanism to carry on the
communications “inside” LinkSmart. That is, the communication between Network Managers.

The reasons that have led us to select JXTA are:

• Interoperability: Enables communication between peers independently of network addressing and
physical protocols.

• Platform independence: JXTA does not depend on the programming language, network transport
protocols and deployment platforms, giving freedom of choice. Java SE and Java ME
implementations have been selected for LinkSmart.

• Ubiquity: JXTA is designed to be deployed on any device, not just PCs.

• Security: for security means regarding authentication, authorisation, and integrity can be
implemented based on JXTA. Attacks on the level of the protocol cannot be addressed as that
would require changing the JXTA protocol.

• Community support: JXTA is supported by a wide community of developers and the different
specifications are fully documented.

• Wide range of services: Most of the P2P models studied have been designed exclusively for
providing file sharing services. Instead, in JXTA, thanks to its abstract architecture based on six
protocols, it is possible and feasible to create a wide range of interoperable services and
applications.

8.2.3 Purpose

The Network Manager is the bottom layer of the LinkSmart middleware deployed in LinkSmart Gateways and
in LinkSmart-enabled devices. It is the entry and exit point of information of the LinkSmart middleware.
There is only one Network Manager per device where the middleware is deployed.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 37 of 89 Submission date: 2011-11-30

The Network Manager provides a Web Service interface (which is the main interface of the Network
Manager), which is the information entry point for the middleware. Data transferred between LinkSmart-
enabled devices and gateways should always pass through the Network Manager.

8.2.4 Main Functionalities

The Network Manager is responsible of managing the communication between LinkSmart-enabled devices.
In order to do this, the Network Manager:

• Creates and overlay P2P network, where all the LinkSmart-enabled devices appear directly
interconnected, no matter if they are behind a NAT (Network Address Translator) or Firewall.

• Provides indirection architecture for addressing Web Services hosted by LinkSmart devices using the
HID addressing mechanism. Each service is identified in LinkSmart through an HID, which is a global
and unique identifier. The Network Manager provides interfaces for other managers, applications
and LinkSmart devices for HID creation, modification and deletion. It also offers the possibility to
select the transport protocol for the service invocation between TCP, UDP and Bluetooth.

• Provides a transport mechanism over the overlay P2P network for invoking Web Services hosted by
LinkSmart devices (SOAP Tunnelling) using the HID addressing mechanism. The SOAP messages
addressed to an HID are routed by the Network Manager through the overlay network to the
Network Manager hosting the service. Therefore, using the SOAP Tunnelling and the Network
Manager any device or application is able to transparently publish and consume services anywhere,
anytime, breaking the network interconnectivity barriers and independently of the service endpoint
location.

• Provides a transport mechanism over the overlay P2P network for multimedia content exchange
between UPnP AV or DLNA devices.

• Provides session management mechanisms between HIDs during service invocations.
• Provides time reference synchronization between different Network Managers.
• Provides a status page for developers, which the developer can use for monitoring dynamic

information about the LinkSmart Network and the HIDs available.

Each LinkSmart-enabled device will run one and only one Network Manager. The Network Manager
maintains two complex data structures: the LinkSmart ID (HID) and the Session. The following sections
provide an overview on these two data structures.

8.2.5 LinkSmart Web Service Provider

First of all, an in order to make the deployment of Web Services in the LinkSmart middleware easier, a new
OSGi bundle has been created to take the place of the obsolete Axis bundle that the different managers
were using since the beginning of the project. This bundle is the LinkSmart WS Provider bundle. The main
goal of this component is to provide automatic deployment of Web Services and independence for LinkSmart
managers from Axis.

Now it is possible to deploy Web Services, including the LinkSmart manager ones, in an automatic way,
without the use of a deployer class or WSDD files.

The LinkSmart WS Provider bundle is still based on the Axis bundle, but it has been adapted to the
LinkSmart middleware, providing transparent interfaces to the developers supporting all the characteristics
LinkSmart middleware need.

The LinkSmart WS Provider bundle is composed of three packages, as seen in the Table .

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 38 of 89 Submission date: 2011-11-30

Package Definition
com.eu.LinkSmart.security.axis Provides Core LinkSmart security to the

bundle.
com.eu.LinkSmart.wsprovider.impl The main package, deals with the

detection of OSGi services and their
deployment as Web Services.

com.eu.LinkSmart.wsprovider.servlet Deploys a servlet which represents the
Axis administration servlet.

Table 1: LinkSmart WS Provider package structure

The main class is the Activator class, which can be found under the com.eu.LinkSmart.wsprovider.impl
package. It deals with the detection of OSGi services and their deployment as Web Services through a
ServiceTracker object.

The services to be published as Web Services should have been deployed as an OSGi service. It is also
recommended but not mandatory to use OSGi Declarative Services. When a service is to be published as a
Web Service using the LinkSmart WS Provider, a set of properties need to be defined:

• SOAP.service.name: mandatory property, it defines the name of the service to be deployed. The
LinkSmart WS Provider deploys each service using this defined property. Once this property is set,
the service will be deployed with this name at http://localhost:8082/axis/services.

• SOAP.service.methods: optional property, it provides a list of the names of the methods to be
implemented. When defined, the LinkSmart WS Provider deploys only the methods indicated.
Otherwise, the LinkSmart WS Provider deploys all the methods of the Web Service, i.e. all methods
that have an access level of ‘public’.

• LinkSmart.security.config: optional property, it defines whether the Web Service is to be deployed
with or without security. A Boolean value defines this property. All services will be deployed with
security by default.

In order to register and deploy a Web Service in the LinkSmart middleware, the developer must register the
service in the framework with the SOAP.service.name property indicating the name of the service.
Programmatically, and in the case of non declarative services, a service is registered as follows:

Hashtable props = new Hashtable();

props.put("SOAP.service.name", "EventManagerPort");

context.registerService(EventManager.class.getName(),this, props);

By using OSGi declarative services, the services are already registered via the framework, but the properties
have to be set in the OSGI-INF/component.xml file (at least the mandatory SOAP.service.name property), as
shown in the Figure 15.

Figure 15: Introduction of a property at the XML file of a declarative service

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 39 of 89 Submission date: 2011-11-30

8.2.6 Crypto HIDs

From the Lessons Learned of the third iteration, we realized that the service addressing mechanisms
implemented in LinkSmart, the HIDs, lack of high security features. The HIDs are identifiers that allow
developers and applications to identify each entity evolving in a LinkSmart network. It was designed to
identify each service in a given situation (context) but also to dismiss the real identity of the device offering
the service.

The main problem with current implementation of HIDs is that the information related to their description is
being exchanged over the network without any encryption between the Network Managers. Thus an attacker
to the LinkSmart middleware would be able to identify the identity of HIDs and the service provided by the
owner of the HID by just sniffing the network traffic. Another problem identified with HIDs, is that the
description field associated with them is not enough to unambiguously identify a service, as it is just a String
with no fixed format. These problems are not very important for building applications that do not have high
security requirements, but when moving to domains that require these high levels of security, like e-Health,
the problems become important.

In order to solve these issues, we have extended the HID concept incorporating new security features like
certificate linking, HID description through attributes and HID data encryption. These new secure LinkSmart
Identifiers are called Crypto HIDs. The main features incorporated to Crypto HIDs are:

Certificate linking

Each HID, when it is created, it is associated with a certificate, generated using the Crypto Manager. This
certificate is used to encrypt and decrypt all the information sent to and from this HID. Therefore, before
sending any information to an HID, the Network Managers perform a certificate exchange process for
encrypting the information that is going to be exchanged. This certificate exchange is performed using the
Secure Session Protocol, with which certificates will be distributed using a public key exchange protocol.

HID attributes

In order to unambiguously identify a HID in the LinkSmart Network, we have extended the description of
HIDs to attributes. Each HID is created with some attributes, which are securely stored in its certificate. The
number of attributes is not fixed, and it is up to the developer to decide which attributes to use. Some
examples for attributes would be:

• PID (Persistent Identifier): An identifier for the device providing a service (for example, MAC
address of the device)

• SID (Service Identifier): An identifier for the service provided. It could also be a semantic
identifier of the service provided.

• UserID (User Identifier): Identifier for the owner of the device providing a service.

These attributes, and any others, are provided during HID generation following the Java Properties class
XML schema. An example of attributes for an HID would be:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>

<entry key="PID">03-43-F3-23-24</entry>

<entry key="SID">ThermometerService</entry>

<entry key="UserID">Peter</entry>

</properties>

The attributes are not exchanged between Network Managers during the HID exchange process, this is,
Network Managers have all the HIDs in the LinkSmart Network but do not have the information of what does
each HID stand for. In order to provide developers and applications the means to know these attributes, we
have implemented two mechanisms to retrieve the attributes for a specific HID and to query the network

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 40 of 89 Submission date: 2011-11-30

searching for an HID matching some attributes. These two mechanisms have been designed taking security
into account:

� Retrieving attributes for an HID: Using this mechanism, developers and applications are able
to retrieve the attributes for a specific HID. As mentioned above, attributes for a HID are
stored securely into the certificate linked to it. Therefore, in order to retrieve the attributes
for a HID, the Network Manager starts the Secure Domain Protocol, exchanging the
certificates of the interested parties. Therefore, nobody without a valid LinkSmart certificate
is able to retrieve the attributes for a HID.

� Querying the LinkSmart network for a HID matching some attributes: This is the situation

when an application wants to address a specific HID, with some fixed attributes, but without
knowing beforehand which is the HID assigned to it. Imagine an application that wants to
retrieve the temperature from a specific thermometer. It first needs to know the HID of that
thermometer in order to be able to invoke its service.

The process is simple (illustrated in Figure 16 below): a query is generated and sent to all the Network

Managers in the network using a multicast channel (step 1 in Figure 16). In the query, the requester has to

provide its credentials, this is, its HID and attributes. Each Network Manager receives the query and
searches in the local idTable (step 2 in Figure 16) (the table where all the HIDs are stored). If a Network

Manager finds a HID that matches the query (step 3 in Figure 16), before answering to the sender, checks

with the Policy Manager if there is any policy applied for that HID and provides the sender information (step
4 in Figure 16). The Policy Manager answers the Network Manager if it is allowed or not to send that

information to the requester (step 5 in Figure 16). If it is allowed, a query response containing the HID is

sent to the sender over a unicast channel (step 6 in Figure 16). If it is denied, no information is sent to the

sender. Therefore, in every step of this process, security is ensured.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 41 of 89 Submission date: 2011-11-30

Figure 16: Querying the LinkSmart network for a HID matching some attributes

In order to provide the developers the tools for using these new mechanisms, four new methods have been
added to the Network Manager API. The old methods for creating and interacting with HID related
information are still maintained, for backwards compatibility reasons, but its usage is discouraged as they
have been deprecated.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 42 of 89 Submission date: 2011-11-30

8.3 Device Application Catalogue

Device Application Catalogue (DAC) is in charge to keep track of all devices and gateways that are available
in the Linksmart network. The DAC is deployed in a gateway and communicate with other DAC:s to
exchange the list of local devices (devices that are discovered in the local network).

8.3.1 The Graphical Browser

A fundamental part in every LinkSmart-based application is the Device Application Catalogue, which is
managed by the Application Device Manager, as was explained in previous chapters. This is a runtime
component that keeps track of and manages all devices that are currently active within an application. The
LinkSmart Device Application Catalogue serves all LinkSmart middleware managers with the information and
metadata they need regarding devices, their services, and their status.

The LinkSmart uses the LinkSmart Device Ontology and models for discovery to recognise new devices when
they enter into a LinkSmart network. Based on the discovery model it queries the Device Ontology to deduce
what type of device has entered the network. The LinkSmart can be queried by different middleware
managers to retrieve a service interface for different devices.

A LinkSmart browser has been developed to allow a user/developer to graphically browse the LinkSmart
network and inspect properties and services of devices. The browser tool also allows the user to invoke the
different services offered by devices.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 43 of 89 Submission date: 2011-11-30

Figure 17: The LinkSmart Browser

By manually invoking the different services, the actual role the Device Application Catalogue plays in the
LinkSmart middleware can be illustrated. As can be seen in Figure 17 above, 5 different Discovery Managers

are available in the network, each of them is dedicated to discover a certain type of physical device
(Bluetooth, RF Switches, ZigBee etc).

Each Discovery Manager keeps track of the device it has discovered and tries to elicit as much information as
possible from the device. All this physical discovery information can be accessed by calling the service “Get
Device Physical Discovery”.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 44 of 89 Submission date: 2011-11-30

Figure 18: Retrieving discovery information from the physical device

This discovery information is returned as an XML document, which can be seen in the figure below:

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 45 of 89 Submission date: 2011-11-30

Figure 19: Discovery information from a Bluetooth Device

In Figure 19 we can see that it is a Bluetooth Device that has been discovered, it has the Bluetooth Major

DeviceType “Phone” and Minor DeviceType “CellPhonePhone” (Major DeviceType and Minor DeviceType are
part of the Bluetooth standard.

The Bluetooth Discovery Manager has also managed to extract the different Bluetooth services offered by
the device. This discovery information can now be used to reason about what type of device has been
discovered. The physical discovery XML is given to the Device Ontology which deducts that this device
corresponds to a “Basic Phone” in the LinkSmart Device Ontology.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 46 of 89 Submission date: 2011-11-30

Figure 20: Resolving a physical device into a LinkSmart Device.

By invoking the service “Resolve Device” the Bluetooth Discovery Manager can be told that this is a “Basic
Phone”. The idea is of course to do this programmatically, but here it is done manually for illustration
purposes.

Figure 21: Resolve information is sent as an XML structure to the Discovery Manager

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 47 of 89 Submission date: 2011-11-30

The Discovery Manager then creates and publishes the Device to the network as a “Basic Phone” device. The
Basic Phone device is now available together with the services offered by a Basic Phone (in this case a set of
SMS read/send functions).

Figure 22: A physical device with unknown functionality has been transformed into Basic Phone

Device with services for reading/sending SMS

These services are now directly invokable from the Browser, and for instance, an SMS can be sent.

Figure 23: Sending an SMS through the Basic Phone Device

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 48 of 89 Submission date: 2011-11-30

Finally the Browser can be used to retrieve a service description for a web service that allows us to access
the device programmatically:

Figure 24: Using the DAC browser to retrieve a WSDL description for the device.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 49 of 89 Submission date: 2011-11-30

Figure 25: A WSDL (Web Service Description Language) for the device.

8.4 Discovery Manager (Framework)

LinkSmart implements a 3-layered discovery architecture – physical, network and semantic discovery,
see the figure below.

In short the 3-layered discovery architecture works this way: First physical devices are discovered using
native discovery protocols such as Bluetooth. Then LinkSmart middleware (Discovery Manager) creates a
software wrapper that allows further extraction of metadata from the device and makes it available in a
LinkSmart network. Finally the device ontology is used to fully resolve what type of device and what kind of
functions it has and how the service interface looks like.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 50 of 89 Submission date: 2011-11-30

Figure 26: 3-layered discovery architecture in LinkSmart.

8.4.1 Physical Discovery

At the lowest level the LinkSmart project is developing techniques for the discovery at the physical level.
This will allow us to discover devices using communication protocols like Bluetooth, ZigBee, WiFi etc. Each of
these protocols is handled by a specific Discovery Manager.

The Discovery Manager is part of the implementation (a sub-manager) of the Application Device Manager.
This (sub-) manager also implements the base class for all protocol specific discovery managers in
LinkSmart. A discovery manager keeps track of the devices it has discovered. As long as the devices are
unresolved they are treated as Embedded devices of the Discovery Manager. A discovery manager runs
locally on a gateway/PC where it looks for remote devices such as Bluetooth devices.

The following discovery managers exist with interfaces available:

• Bluetooth Discovery Manager
• SerialPort Discovery Manager
• RFSwitch Discovery Manager
• ZigBee Discovery Manager
• UPnP Discovery Manager
• RFID Discovery Manager
• External Discovery Manager

The External Discovery Manager now supports discovery of devices over the P2P architecture.

8.4.1 Network discovery based on UPnP

Once a device has been discovered at the physical level it needs to be discovered at a network level. This is
done by creating a UPnP (Universal Plug and Play) wrapper to represent the device on the network. The
UPnP wrapper then allows the device to be discovered at a network layer.

The UPnP (Universal Plug and Play) architecture offers pervasive peer-to-peer network connectivity of PCs,
intelligent appliances and wireless devices. The UPnP architecture is a distributed, open networking

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 51 of 89 Submission date: 2011-11-30

architecture that uses TCP/IP and HTTP. It enables seamless proximity networking in addition to data
transfer between networked devices at home, in the office and everywhere in between.

It enables data communication between any two devices under the command of any control device in the
network. UPnP has a number of characteristics:

• Media and device independence. UPnP technology can run on any medium including phone
lines, power lines, Ethernet, IR (IrDA), RF (WiFi, Bluetooth), and FireWire. No device drivers are
used; common protocols are used instead.

• Common base protocols. Base protocol sets (Device Control Protocols, DCP) are used, on a per
device basis.

• Operating system and programming language independence. Any operating system and any
programming language can be used to build UPnP products. UPnP does not specify or constrain
the design of an API for applications running on control points. OS vendors may create APIs that
suit their customer's needs. UPnP enables vendor control over device UI and interaction using
the browser as well as conventional application programmatic control.

• Internet-based technologies. UPnP technology is built upon IP, TCP, UDP, HTTP, SOAP and
XML, among others.

• Programmatic control. UPnP architecture also enables conventional application programmatic
control.

• Extensibility. Each UPnP product can have value-added services layered on top of the basic
device architecture by the individual manufacturers.

The UPnP architecture supports zero-configuration, invisible networking and automatic discovery for a
breadth of device categories from a wide range of vendors. Devices can dynamically join a network, obtain
IP addresses, announce their names, convey their capabilities upon request, and learn about the presence
and capabilities of other devices. DHCP and DNS servers are optional. A device can leave a network
smoothly and automatically without leaving any unwanted state information behind.

8.4.2 External Discovery

External discovery enables LinkSmart gateways to locally represent all LinkSmart devices in the LinkSmart
network even if they reside in a different physical network. This enables the developer to build applications
that use devices in exactly the same way independently of their network location.

The basis for the external discovery process is synchronisation of information in-between the Application
Device Managers in the network. For each of the found external LinkSmart devices a local device proxy is
created using the SCPD of the external device. This will also copy all of the LinkSmart UPnP properties for
the device such as the HIDs for the different device services.

The external discovery follows the following procedure:

1. Contact Network Manager to find all Device Application Managers in the network
2. Contact each of the Application Device Managers to retrieve a list of their local devices
3. Contact each device and use the generic LinkSmart Web Service to retrieve the device XML
(SCPD)
4. For each device create a local device proxy using the device XML.

8.4.3 Semantic Discovery

Once the device is discovered as part of the network, it needs to be discovered semantically, i.e., the device
needs to be related to the LinkSmart Device Ontology so that it is known what kind of device has been
discovered.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 52 of 89 Submission date: 2011-11-30

LinkSmart uses two different XML structures to describe a device and its capabilities. First there is the device
description, which contains various metadata regarding the device such as its type, the manufacturer, model
etc. An example of device description is shown below:

<device>

<deviceType>urn:schemas-upnp-org:device:waterPump:1</deviceType>

<friendlyName>GrundfosPump</friendlyName>

<manufacturer>Grundfos</manufacturer>

<manufacturerURL>http://www.grundfos.com</manufacturerURL>

<modelDescription>Pump</modelDescription>

<modelName>Grundfos Magna</modelName>

<modelNumber>X1</modelNumber>

<UDN>uuid:dac824ab-bca1-4d5c-93c5-578a0c697ba1</UDN>

<serviceList>

<service>

<serviceType>urn:schemas-upnporg:

service:grundfosPumpService:1</serviceType>

<serviceId>urn:upnp-org:serviceId:grundfosPumpService</serviceId>

<SCPDURL>_grundfosPumpService_scpd.xml</SCPDURL>

<controlURL>_grundfosPumpService_control</controlURL>

<eventSubURL>_grundfosPumpService_event</eventSubURL>

</service>

</serviceList>

</device>

Secondly, there is the SCPD (Service Control Point Description), which describes the capabilities of the
device and how to invoke its different services. An example of service description is shown below:

<?xml version="1.0" encoding="utf-8"?>

<scpd xmlns="urn:schemas-upnp-org:service-1-0">

<specVersion>

<major>1</major>

<minor>0</minor>

</specVersion>

<actionList>

<action>

<name>GetStatus</name>

<argumentList>

<argument>

<name>ResultStatus</name>

<direction>out</direction>

<relatedStateVariable>Status</relatedStateVariable>

</argument>

</argumentList>

</action>

<action>

<name>SetTarget</name>

<argumentList>

<argument>

<name>newTargetValue</name>

<direction>in</direction>

<relatedStateVariable>Target</relatedStateVariable>

</argument>

</argumentList>

</action>

</actionList>

<serviceStateTable>

<stateVariable sendEvents="yes">

<name>Status</name>

<dataType>boolean</dataType>

</stateVariable>

<stateVariable sendEvents="no">

<name>Target</name>

<dataType>boolean</dataType>

</stateVariable>

</serviceStateTable>

</scpd>

A final part of the semantic discovery is the service discovery task to find a suitable service provided by
specific device (or device type) in accordance to defined requirements. In the context of LinkSmart, the
service discovery task defined this way can be used in various cases, for example:

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 53 of 89 Submission date: 2011-11-30

• From a developer user point of view: to find the required service provided by specific device in
the process of development of basic communication patterns, such as composed (or
orchestrated) services, choreography interfaces or service user interfaces.

• From a system or application point of view: to find the required service provided by specific
device when executing the complex process requiring the service orchestration.

• Tools and matchmakers exist supporting the service discovery for both OWL-S and WSMO
standards (description of this tools is out of scope of this deliverable), which may be used for
particular approach.

In LinkSmart support for SAWSDL annotations is provided. As the SAWSDL approach does not explicitly
support service discovery, there are two basic possibilities, which can be used in this case:

• The Service discovery process is realized by searching the SAWSDL according to provided
semantic annotations.

• Using the annotations in SAWSDL file, the model of service is annotated in the LinkSmart
service ontology and the discovery process is realized by matching the ontology concepts in
accordance to specified requirements, similarly as in OWL-S/WSMO approach.

8.5 Event Manager

The LinkSmart Event Manager provides publish/subscribe functionality, i.e., the ability for publishers to send
a notification to multiple subscribers while being decoupled from them (in terms of, e.g., not holding direct
references to subscribers). The specific variant of publish/subscribe implemented is topic-based
publish/subscribe where event are key/value pairs.

The Event Manager is deployed as a service in the LinkSmart network and implements the following
interface:

Figure 27: Event Manager Interface

Interaction with the Event Manager can be performed using this service, by creating an Event Manager client
handling the calls to the Event Manager. To publish an Event to the Event manager, the publish method
must be called, passing the topic of the Event, as well as an array of key-value Part objects, that specify
additional data associated with the Event.

EventManagerPort em = { Get Event Manager Client };

Part[] parts = { Get Part Array };

em.publish("ExampleTopic", parts);

The code snippet above gives an example of using the EventManagerPort interface to publish an Event. An
application can subscribe to receive notifications of events by calling the subscribe or subscribeWithHID
methods. These methods take the topic of the events being subscribed to, along with callback information,
such the the Event Manager can send notifications when the events are published. With the subscribe
method, this information is provided as a Web Service endpoint address, whereas the subscribeWithHID
method takes the HID of the subscriber, to then call back through the LinkSmart Network Manager.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 54 of 89 Submission date: 2011-11-30

EventManagerPort em = { Get Event Manager Client };

em.subscribeWithHID("ExampleTopic", <Subscriber HID>);

The above code snippet gives an example of a subscriber subscribing to the Event Manager. Furthermore,
subscribers must implement the following interface:

The figure below shows the resulting deployment:

Figure 28: Event Manager Deployment
Given such a deployment, the figure below shows a typical interaction with the EventManagerServer (where
address is the address of the Subscriber web service that later should be notified):

Figure 29: Subscriber Notification

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 55 of 89 Submission date: 2011-11-30

8.6 Access Control Policy Framework

The Policy Framework provides policy-driven, access-control protection for LinkSmart devices and
applications. Policies can be utilised to ensure access to devices and applications is limited only to those
permitted access, including the ability to restrict the level of discoverability of an end-user’s devices and
applications.

The Policy Framework, consisting of its various components, provides the functionalities to create, update,
and maintain Policies, in addition to its core of evaluating access requests, and enforcing the decisions
made. The SDK functionality of the Access Control Policy Framework comes with three distinct interfaces, as
well as another interface for extension, these being:

• Policy Enforcement Point
o Called at the point of interception of a request
o Formats the credentials of the request in to an XACML RequestCtx object, and calls the PDP

for a decision
o Enforces the returned decision, handling any obligations specified in the Policy

• Policy Decision Point
o Receives the XACML RequestCtx object from the PEP
o Analyses the request against the policies stored in its policy repository
o Returns the determined decision

• Policy Administration Point
o Interface exposed by the PDP for the administration of XACML policies
o Active / deactivate XACML policies

• Policy Information Point
o Extension interface for PDP
o Adds functions for the PDP to use when they are referred to in XACML policies

8.6.1 Policy Enforcement Point

Typically, in the context of communication in LinkSmart, the Access Control Policy Framework is used to
provide access control at the level of the Network Manager, such that access decisions can be made on
receiving a request, through the SOAP Tunnel, for a hosted service, before actually forwarding the payload
of the request to the endpoint service. The Policy Enforcement Point (PEP), therefore, is utilised by the
Network Manager, when it receives a call, forwarding the various credentials it has of the request, to the
Policy Enforcement Point.

Although the PEP itself doesn't expose a service to the LinkSmart Network, it does register itself with an HID
and certificate, such that it can be identified as being a PEP. The SID of the PEP is as follows:

 SID = com.eu.LinkSmart.policy.pep

Configuration of the PEP bundle specifies the following important configurations:

• Pep.PID = The PID of the registered PEP service
• Pep.PdpPID = The PID of the PDP service that the PEP should use to retrieve an access decision

The PEP exposes a couple of methods also, used by the Network Manager, to pass the credentials of a
request. These are:

public PepResponse requestAccessDecision(String senderHid,

 String senderCert,

 String receiverHID,

 String receiverCert,

 String soapMsg,

 String sessionId);

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 56 of 89 Submission date: 2011-11-30

public PepResponse requestAccessDecisionWMethod(String senderHID,

 String senderCert,

 String receiverHID,

 String receiverCert,

 String method,

 String sessionId);

Both methods request an access decision, but for different contexts. The Network Manager uses the
requestAccessDecision method, passing on the complete SOAP Message received from which the PEP
extracts the credentials of the action to be performed, whereas the requestAccessDecisionWMethod method
passes the name of the method directly instead. The senderCert and receiverCert arguments are the
encoded CryptoHID certificates for the two entities involved at either end of the request.

8.6.2 Policy Decision Point

The Policy Decision Point (PDP) is a manager on the LinkSmart network that registers two different services,
one for the process of access requests, returning a decision, and another for the administration of the
XACML policies that the PDP uses in these decision making processes. This administration service is
described in the next chapter.

The PolicyDecisionPoint interface, of the LinkSmart Middleware API, declares just one single method, for the
evalutation of XACML RequestCtx's, as follows:

public String evaluate(String requestXml);

This method takes the RequestCtx object, encoded as a String, and evaluates it against the set of policies in
the policy repository. The ResponseCtx, containing the decision made along with any obligations with the
decision, is returned as encoded XML.

The SID of the PDP service is:

 SID = com.eu.LinkSmart.policy.pdp

The PDP has minimal configuration, using the configurator, as follows:

• PdpService.PID = PID of the PDP
• Pdp.UseDatabase = true / false depending on whether XMLDB based storage or file-based

storage is to be used for XACML policies

8.6.3 Policy Administration Point

The interface for actually authoring XACML policies is part of the IDE, and discussed in the chapter 7.7. It
uses the interface exposed by the PDP, that is distinctly separated from the service performing the decision
functionality, as described in the previous chapter. It exposes the following methods as the PdpAdmin
interface of the Middleware API:

public boolean activatePolicy(String policyId);

public boolean deactivatePolicy(String policyId);

public String[] getActivePolicyList();

public.String[] getInActivePolicyList();

public boolean publishPolicy(String policyId, String policyXML);

public boolean removePolicy(String policyId);

public String getPolicy(String policyId);

The key method involved here, is the publishPolicy method that publishes the policy with the given id,
policyId, with the XML-encoded content provided with the policyXML argument.

 The SID of the PDP service is:

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 57 of 89 Submission date: 2011-11-30

 SID = com.eu.LinkSmart.policy.pap

The PAP has even less configuration than the PDP, using the configurator, as follows:

• PdpAdminService.PID = PID of the PDP Administration service

8.6.4 Policy Information Point

The LinkSmart PDP is designed to be extensible, to easily allow for new functionality to the PDP through
adding additional Policy Information Point (PIP) components, which includes the ability to resolve certain
attributes, add additional functions that can be used in policies, add new data types, and so on.

PIPs are implemented as OSGi bundles that register services, recognised by the PDP, that it uses to extend
the functionality, adding new Functions and Attribute Finders to the PDP at runtime. These interfaces are
PipFunction, and PipModule.

PipFunction provides a method that the PDP can use to retrieve the custom XACML Functions
(com.sun.xacml.cond.Function) that it then installs to the PDP Function factory, such that they are then
immediately available for use. Therefore, the interface is simply:

 public interface PipFunction {

 public Set<Function> getFunctions();

}

Implemented PipModule components define XACML AttributeFinders, that can retrieve attributes that are not
available in the request, but are specified in an XACML policy. The PipModule itself is essentially just an
extension of the AttributeFinderModule defined by the XACML 1.x implementation by Sun, providing a
service name unique to the LinkSmart Access Control Policy Framework. Therefore, the PipModule interface
is:

 public abstract class PipModule extends AttributeFinderModule {

}

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 58 of 89 Submission date: 2011-11-30

9. Creating a Basic Linksmart Application

In this chapter we describe the basic steps to create a Linksmart application in a .net environment,
showing how the Linksmart SDK is integrated into the Visual Studio development environment.

9.1 Creating a Linksmart application from a template

In Visual Studio start by selecting “New Project”:

Figure 30: Template view in Visual Studio

Under the Visual C# menu the Linksmart category appears. Select the type of Linksmart application
you will develop, for instance a basic Linksmart Application.

Once you have selected the type of application and click OK, Linksmart creates the necessary project
files for you:

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 59 of 89 Submission date: 2011-11-30

Figure 31: Auto generated files for Basic Linksmart Application

The following files and references are automatically created:

• Your main program file named “program.cs”

• A rule file for binding your devices to identifiers (PIDs). This file is called
applicationbindings.xsl

• A Web Reference to the Application Device Manager

• A Web Reference to the Network Manager (in file networkmanagerapplicaitonservice.cs)

• A Web Reference for creating WS clients for accessing basic IoT devices

9.2 Initiating the Network Manager

The first step in any Linksmart application is to initiate the Network Manager in order to be able to
communicate with other Linksmart Managers and devices. This is done in the method

SetUpNetworkManager:

void SetUpNetworkManager(string url)

 {

 m_networkmanager = new NetworkManagerApplicationService();

 m_networkmanager.Url = url;

 System.Net.ServicePointManager.Expect100Continue = false;

 }

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 60 of 89 Submission date: 2011-11-30

9.3 Initiating the Application Device Manager

The next step is to initiate the Application Device Manager. There are three things you need to do to
initiate the Application Device Manager:

• Retrieve the Linksmart ID for the Application Device Manager from the Network Manager

• Use the HID to create an endpoint URL for the Application Device Manager

• Load your device bindings into the Application Device Manager (if you don´t provide a
bindings file the Application Device Manager, will use default ways of making bindings
instead).

void SetUpApplicationDeviceManager(string gateway, string endpoint, string appname)

 {

 m_applicationdevicemanager = new ApplicationDeviceManager.ApplicationDeviceManager();

 //Use NM to find HID for Application Device Manager

string AppDevMgrHID =

m_networkmanager.getHIDsbyDescriptionAsString("ApplicationDeviceManager:" + gateway +

":StaticWS");

string[] DacHIDs = AppDevMgrHID.Split(' ');

AppDevMgrHID = DacHIDs[0].Trim();

 m_applicationdevicemanager.Url = endpoint + "/SOAPTunneling/0/" + AppDevMgrHID";

try

{

 //check if bindingfile is correct xml before sending to application device manager

 XmlDocument myDoc = new XmlDocument();

 string bindingrules = "";

 myDoc.Load("applicationbindings.xsl");

 bindingrules = myDoc.OuterXml;

 m_applicationdevicemanager.AddApplicationBinding(appname, bindingrules);

 }

 catch (Exception e)

 {

 }

}

Figure 32: Initiating the Application Device Manager

At this point we have established a connection to a NetworkManager and we have our DAC initiated.

9.4 Working with devices

Once you have initiated Network Manager and Application Device Manager you can start working
with devices. To use a IoT Device in your application you start by creating a Web Service client for
it. Use your web reference, IoTDevice (found in the Solution Explorer window).

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 61 of 89 Submission date: 2011-11-30

Figure 33: Creating WS clients for device

Now you need a Linksmart identifier to create an endpoint URL for the device (assuming you have
the base url in the variable “endpoint”) which we assume you have assigned the identifier
“PetersPhone” in your application bindings file:

IoTDevice.IoTDeviceWS myIoTDevice = new IoTDevice.IoTDeviceWS();

 string myhid=m_applicationdevicemanager.GetHID("", "PetersPhone");

 if (myhid != "")

 myIoTDevice.Url = endpoint + "/SOAPTunneling/0/" + myhid + "/0/hola";

Once you have established a url for the device you can now start consuming its IoT Services. In this
example we are only working with devices at a generic level, as IoT Device and therefore only have
access to meta data services like “GetDeviceXml”:

string myXml = myIoTDevice.GetIoTDeviceXML();

9.5 Applications Bindings

The application bindings file (applicationbindings.xsl) is used to assign persistent and context
dependent identifiers to devices.

 The bindings are expressed as a set of xslt rules over the IoT Device XML (detailed in paragraph
10.4).

<binding>

<xsl:template match="upnp:device">

……….

<xsl:if test="upnp:deviceType='urn:schemas-upnp-org:IoTdevice:basicswitchdevice:1' or ….

<xsl:if test="upnp:friendlyName='DiscoBall'">

 <hydraUDN>DiscoBall</hydraUDN>

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 62 of 89 Submission date: 2011-11-30

 <locationdata>

 <building>CNet Office</building>

 <room>Main</room>

 <position>Table</position>

 </locationdata>

 </xsl:if>

 <xsl:if test="upnp:friendlyName='PetersLight' and hydra:gateway='DELL1'">

 <IoTUDN>DemoLight</ IoTUDN >

 <locationdata>

 <building>CNet Office</building>

 <room>Main</room>

 <position>Table</position>

 </locationdata>

</xsl:if>

 <xsl:if test="IoT:gateway='Casa Domotica'">

 <hydraUDN><xsl:value-of select="upnp:friendlyName"/></hydraUDN>

 <locationdata>

 <building>Casa Domotica</building>

 <room><xsl:value-of select="upnp:friendlyName"/></room>

 </locationdata>

</xsl:if>

……….

</binding>

Figure 34: Application Bindings XSL

The IoTUDN is the IoT Unique Device Name, which can be derived from any of the properties in the
Device XML, though normally it is set to the upnp:fiendlyName. The binding combines the IoTUDN
with possible location (context) data, into a PID (Persistent Identifier) for the device. Applying the
binding rules to the Device XML results in the specific binding being added to the DAC where it can
be used by the application code.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 63 of 89 Submission date: 2011-11-30

The developer can define the application bindings by updating the bindings XML file (an associated
XML schema supports the editing). In any case the SDK also provides a default binding of devices,
based on the upnp:friendlyName and without context data.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 64 of 89 Submission date: 2011-11-30

10. Creating an Advanced LinkSmart Application

It is expected that one of the most common uses of the LinkSmart middleware will be for monitoring
and controlling the energy consumption of physical devices.

10.1 Initiate Application

To create an Energy Application you follow the same steps as before:

• Select New Project

• Select LinkSmartEnergyApplication template

Figure 35: Energy Application Template view

The following files and references are automatically created:

• Your main program file named “program.cs”

• A rule file for binding your devices to identifiers. This file is called applicationbindings.xsl

• A Web Reference to the Application Device Manager

• A Web Reference to the Network Manager (in file networkmanagerapplicationservice.cs)

• A Web Reference to the Event Manager (in file eventmanagerservice.cs)

• A Web Reference for creating WS clients for accessing basic IoT devices.

• A Web Reference for creating WS clients for accessing Basic Switch and Enhanced Switch
devices.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 65 of 89 Submission date: 2011-11-30

• Web Reference for accessing the Energy services of IoT devices.

10.2 Searching and finding for devices

Next step is now to access and control some energy consuming devices. As you can see under the
“Web References” menu, you now have 2 references to “BasicSwitchDevice” and
“EnhancedSwitchDevice”.

Figure 36: Selecting web references to devices

These can be used to control a particular device, but you need to find the device. You need to setup
the Network and Application Device Manager as was described in previous section (the code is
already in your program.cs file).

Once this is done, you can query the Application Device Manager to find the devices. To do this you
need to be familiar with the LinkSmart Device XML structure and the standard XML query language
“Xpath”.

The following XPath statement will match each device that is of type “basicswitchdevice”.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 66 of 89 Submission date: 2011-11-30

".//*[name()='deviceType' and .='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1']”

If you use this statement as input to the method GetIoTURLsFromXPath of the Application Device

Manager you will get a list of URLs to all discovered and active devices in a LinkSmart Network.

Since a device might expose several web services you need to specify which one you are interested

in. In this case it is “IoTidStaticWS”. This method is a shortcut compared with retrieving the HID and

composing the URL yourself as was done in the previous example.

public void TurnOnAllSwitchDevices()

{

string basicswitches =

m_applicationdevicemanager.GetIoTURLsFromXpath(".//*[name()='deviceType' and .='urn:schemas-

upnp-org:IoTdevice:basicswitchdevice:1']", "IoTidStaticWS", "");

10.3 Invoking Device Services

Now it is time to start controlling the devices. This code shows an example how you turn on all
switches:

public void TurnOnAllSwitchDevices()

{

 string basicswitches =

m_applicationdevicemanager.GetIoTURLsFromXpath(".//*[name()='deviceType' and .='urn:schemas-

upnp-org:IoTdevice:basicswitchdevice:1']", "IoTidStaticWS", "");

 char[] splitchar = new char[1];

 splitchar[0] = ',';

 string[] switches = basicswitches.Split(splitchar);

 foreach (string switchurl in switches)

 {

 BasicSwitchDevice.BasicSwitchWS mySwitch = new BasicSwitchDevice.BasicSwitchWS();

 mySwitch.Url = switchurl;

 mySwitch.TurnOn();

 }

}

Figure 37: Invoking device services

This example shows how to use the EnergyWS web service to calculate the current total effect for all
running devices:

public int GetTotalCurrentEffect()

 {

 int returnvalue = 0;

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 67 of 89 Submission date: 2011-11-30

 string basicswitches =

m_applicationdevicemanager.GetIoTURLsFromXpath(".//*[name()='deviceType' and

.='urn:schemas-upnp-org:IoTdevice:basicswitchdevice:1']", "IoTidEnergyWS", "");

 char[] splitchar = new char[1];

 splitchar[0] = ',';

 string[] switches = basicswitches.Split(splitchar);

 foreach (string switchurl in switches)

 {

IoTDeviceEnergyWS. IoTDeviceEnergyWS mySwitch = new

IoTDeviceEnergyWS.IoTDeviceEnergyWS();

 mySwitch.Url = switchurl;

 string effectstring = mySwitch.GetCurrentEffect();

 if (effectstring != "")

 {

 returnvalue = returnvalue + System.Convert.ToInt32(effectstring);

 }

 }

 }

Figure 38: Energy WS call

10.4 Understanding the LinkSmart Device XML

Since all metadata and the state of a device is communicated using an XML structure it is
fundamental to understand this structure and how it can be used. Below is an example of the
LinkSmart Device XML for a device. The LinkSmart Device XML is an extension of the UPnP SCPD
XML (Service Control Point Document) vocabulary. Elements with the namespace “IoT” are the
Linksmart-specific extensions.

<root xmlns="urn:schemas-upnp-org:device-1-0">

<specVersion>

 <major>1</major>

 <minor>0</minor>

 </specVersion>

 <device>

 <deviceType>urn:schemas-upnp-org:IoTdevice:enhanchedswitchdevice:1</deviceType>

 <IoTidDynamicWS xmlns="hydra">0.0.0.6189708676876140718</IoTidDynamicWS>

 <energywsendpoint xmlns="hydra">http://212.214.80.144:8080/IoTdevice/8619ff3a-af98-44a9-85da-

7f5f18f7e562/energy</energywsendpoint>

 <IoTidStaticWS xmlns="hydra">0.0.0.6592261886889156134</IoTidStaticWS>

 <discoveryinfo

xmlns="hydra"><tellstickdevice><name>PetersLight2</name><vendor>Nexa</vendor><deviceid>2</

deviceid></tellstickdevice></discoveryinfo>

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 68 of 89 Submission date: 2011-11-30

 <IoTidUPnPService_urn_schemas-upnp-org_memoryservice_1

xmlns="hydra">0.0.0.4695383175879738995</IoTidUPnPService_urn_schemas-upnp-

org_memoryservice_1>

 <networkmanager

xmlns="hydra">http://localhost:8082/services/NetworkManagerApplication</networkmanager>

 <IoTUDN xmlns="hydra">PetersLight2</IoTUDN>

 <standbytime xmlns="hydra">60</standbytime>

 <status xmlns="hydra">web service initiated</status>

 <IoTidStaticWSDescription xmlns="hydra">PetersLight2:StaticWS</IoTidStaticWSDescription>

 <IoTidUPnPService_urn_schemas-upnp-org_locationservice_1

xmlns="hydra">0.0.0.8817877591614169464</IoTidUPnPService_urn_schemas-upnp-

org_locationservice_1>

 <IoTidUPnPService_urn_schemas-upnp-org_energyservice_1

xmlns="hydra">0.0.0.410334127518851262</IoTidUPnPService_urn_schemas-upnp-

org_energyservice_1>

 <IoTWSEndpoint xmlns="hydra">http://212.214.80.144:8080/IoTdevice/8619ff3a-af98-44a9-85da-

7f5f18f7e562</IoTWSEndpoint>

 <UPnPEndpoint xmlns="hydra">http://212.214.80.144:64277/</UPnPEndpoint>

 <IoTidUPnPService_urn_upnp-org_serviceId_switchservice_1

xmlns="IoT">0.0.0.7715272012937744631</IoTidUPnPService_urn_upnp-

org_serviceId_switchservice_1>

 <dynamicWSEndpoint xmlns="hydra">http://212.214.80.144:64277/</dynamicWSEndpoint>

 <wsendpoint xmlns="hydra">http://212.214.80.144:8080/0/EnhancedSwitchWS</wsendpoint>

 <IoTidHydraWS xmlns="hydra">0.0.0.713272519360667694</IoTidHydraWS>

 <DACEndpoint xmlns="hydra">http://212.214.80.144:8080/ApplicationDeviceManager</DACEndpoint>

 <IoTidUPnPDescription xmlns="hydra">PetersLight2:UPnP</IoTidUPnPDescription>

 <IoTidHydraWSDescription xmlns="hydra">PetersLight2:HydraWS</IoTidHydraWSDescription>

 <securityinfo xmlns="hydra"><securityInfo xmlns="hydra"><property

name="tellstick.api.version"><value>2.1</value></property><property

name="switch.mode"><value>2</value></property><property

name="EncryptionProtocol"><value>None</value></property></securityInfo></securityinfo>

 <IoTidUPnPService_urn_upnp-org_serviceId_1

xmlns="hydra">0.0.0.6339391984478104269</IoTidUPnPService_urn_upnp-org_serviceId_1>

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 69 of 89 Submission date: 2011-11-30

 <IoTidEnergyWSDescription xmlns="hydra">PetersLight2:EnergyWS</IoTidEnergyWSDescription>

 <gateway xmlns="hydra">BLONDIE</gateway>

 <IoTidUPnP xmlns="hydra">0.0.0.3263501067198386232</IoTidUPnP>

 <IoTidEnergyWS xmlns="hydra">0.0.0.3952190387415366563</IoTidEnergyWS>

 <friendlyName>PetersLight2</friendlyName>

 <manufacturer>Telldus</manufacturer>

 <manufacturerURL>http://www.telldus.se</manufacturerURL>

 <modelDescription>Remote switch</modelDescription>

 <modelName>Tellstick</modelName>

 <modelNumber>X1</modelNumber>

 <UDN>uuid:8619ff3a-af98-44a9-85da-7f5f18f7e562</UDN>

</device>

</root>

Figure 39: Device XML

The following element is an example of a standard UPnP element. It specifies the device type:

<deviceType>urn:schemas-upnp-org: IoTdevice:enhanchedswitchdevice:1</deviceType>

This element is an example of a Hydra-specific extension. It specifies the gateway where the device

is running:

 <gateway xmlns="hydra">BLONDIE</gateway>

There are a number of methods that allows for searching of devices in the network. These require
an XPath expression as parameter. This Xpath expression is evaluated against the LinkSmart Device
XML for each device to decide if the match the search criteria or not.

The various elements can be grouped into categories:

PID

The IoTUDN element represents the PID (Persistent ID) that has been assigned to this particular
devie.

<IoTUDN xmlns="hydra">PetersLight2</IoTUDN>

IoTids

The following elements represent the different IoT IDs (HID) for different device services. The
IoTidStaticWS is the normal HID to be used, while IoTidHydraWS is the HID to access the generic
IoT services of the device.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 70 of 89 Submission date: 2011-11-30

Note the element IoTidUPnPService, for each UPnP service a HID is created with the format
IoTidUPnPService_serviceid (where in the service id : has been replaced with _ as in
“IoTidUPnPService_urn_schemas-upnp-org_energyservice_1”)

IoTidStaticWS

IoTidDynamicWS

IoTidHydraWS

IoTidEnergyWS

IoTidUPnPService_

Endpoints

The endpoint elements represent the endpoint to the device service. Normally this should not be
used. Use the corresponding HID instead.

energywsendpoint

wsendpoint

dynamicwsendpoint

UPnPendpoint

Other LinkSmart elements

The DACEndpoint element represents the DAC that has discovered and created the IoT Device. It
“owns” the device

<DACEndpoint xmlns="hydra">http://212.214.80.144:8080/ApplicationDeviceManager</DACEndpoint>

The gateway element represents the gateway where the device is running:

<gateway xmlns="hydra">BLONDIE</gateway>

UPnP elements

The following elements are standard UPnP elements

<deviceType>urn:schemas-upnp-org:hydradevice:enhanchedswitchdevice:1</deviceType>

<friendlyName>PetersLight2</friendlyName>

<manufacturer>Telldus</manufacturer>

<manufacturerURL>http://www.telldus.se</manufacturerURL>

<modelDescription>Remote switch</modelDescription>

<modelName>Tellstick</modelName>

<modelNumber>X1</modelNumber>

<UDN>uuid:8619ff3a-af98-44a9-85da-7f5f18f7e562</UDN>

10.5 Extending the LinkSmart Device XML

It is possible to extend the LinkSmart Device XML to incorporate your own metadata and state
information. Simply call the method SetProperty in the IoT WS, then you can add properties to the
device which will be available in the LinkSmart Device XML and can be used as part of your search
expressions.

Calling myDevice.SetProperty(“myproperty”,”value1”), will create the following element in your
LinkSmart Device XML:

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 71 of 89 Submission date: 2011-11-30

<myproperty xmlns="hydra">value1</myproperty>

You can then easily select devices in the network that has myproperty=”value1”.

For instance the following call with get an Hydra encoded URL to the Energy WS for the all devices
that has myproperty=”value1”.

m_applicationdevicemanager.GetIoTURLsFromXpath(".//*[name()='myPropety' and .=’value1']" ,

"IoTidEnergyWS", "");

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 72 of 89 Submission date: 2011-11-30

11. Device Developer Kit .net

There are two main tools for creating device code for .Net in Linksmart:

• Intel Service Author for UPnP Technologies

• Linksmart .Net DDK tool

The example device that we will create in this tutorial is an OBEX device for a smart phone.

11.1 Using Intel Service Author for UPnP Technologies

This tool is used for creating the service methods and producing an SCPD that will be used as input
for the final code generation.

Figure 40: State Variables in Service Author

The first step is to define the state variables that will be used by the service. State variables have to
be defined for all Input/output parameters used in the service. In this case we have a number of
state variables defined with their respective types.

The next step is to define actions, i.e. the methods that this service should support. This is done in
the “Actions” tab.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 73 of 89 Submission date: 2011-11-30

Figure 41: Actions in Service Author

Here we have defined a number of methods with their corresponding arguments. The methods are
added using the “Action Editor” which allows for adding arguments and defining in which direction it
is used, see below.

Figure 42: Action Editor

When one is finished it is time to save the SCPD to file for later processing in the Hydra .net DDK
tool.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 74 of 89 Submission date: 2011-11-30

Figure 43: Saving scpd file

11.2 Using Linksmart .Net DDK tool

The actual code generation is done in the Linksmart .Net DDK tool. It is also where the actual
configuration of device type and other settings are done.

The first step is to “Add Device” by right clicking in the tools left pane.

Figure 44: Create IoT Device in DDK tool

The next step is to edit the meta data for the device, i.e., device name, type, description etc.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 75 of 89 Submission date: 2011-11-30

Figure 45: Properties of Hydra Device

Then one adds the service created in the previous section by right clicking on the device in the left
pane.

Figure 46: Adding service to Device

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 76 of 89 Submission date: 2011-11-30

Figure 47: Selecting the SCPD file

Now we have added the OBEX service and we can see all the methods in that service.

Figure 48: Device with services

The next step is to select the device type of the device using the ontology class browser. For this
device we select MobilePhone as the ontology class. This information is used when the device
template is entered in to the ontology.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 77 of 89 Submission date: 2011-11-30

Figure 49: Adding Hydra device class for the Device
Finally we have arrived at the stage where it is time to generate the code for the Hydra device.
Select the “File” menu and choose “Generate Hydra Device”.

Figure 50: Generate the Hydra device code

In the code generation dialogue one has to decide the project name and optional Namespace for the
generated code. In the Hydra settings tab we can select that we want to add the Device as a
template device in the ontology.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 78 of 89 Submission date: 2011-11-30

Figure 51: General settings for the code generation

Figure 52: Ontology options in the code generation

A complete Visual Studio project is created with the necessary Hydra references and the device
template is added to the ontology.

In the ontology manager tool we can see the information that was added to the ontology by the
DDK for the device template.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 79 of 89 Submission date: 2011-11-30

Figure 53: Ontology browser with the created device template

The next step is to open the Visual Studio project.

Figure 54: Generated Visual Studio project

The device code is already executable since all methods are stubbed. Normally one would then
change the code in the stubs to do the actual device communication. The location of the stubs to be
changed is in “Device name”.cs, i.e. SmartPhone.cs in this project. But in this case we will start the
device by opening the “Debug” menu and selecting “Start debugging”.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 80 of 89 Submission date: 2011-11-30

Figure 55: Start Debug
If we run a Linksmart DAC tool we will find our newly created device with all its services. Note that
we have automatically received the relevant Hydra services: HydraService, EnergyService,
LocationService and Memory service. We can also see that the Device is properly discovered and has
all the Hydra properties such as HID.

Figure 56: Graphical DAC browser with the newly created device

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 81 of 89 Submission date: 2011-11-30

12. Extending the LinkSmart Ontology model

It is possible to extend the default LinkSmart Ontology Model. Figure 57 shows how new additional

information has been added to the running instance of an Ontology Manager. The tool used is part of the

LinkSmart IDE2 and allows ontologies to be exported to OWL files and opened in an ontology editor e.g.

Protégé. Figure 58 consist of a piece of the exported OWL file showing a Thermometer that has been

created.

Figure 57: The IoT device in the LinkSmart Ontology Manager IDE

2
 The LinkSmart IDE (Integrated Development Environment) is implemented as a plugin to the Eclipse IDE.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 82 of 89 Submission date: 2011-11-30

Figure 58: Piece of the exported OWL file where the Thermometer information is shown

The device information from the default LinkSmart Device Ontology can be integrated with additional device

information. This can be used, for instance, to integrate information about Locations and Energy Features

that can be connected to LinkSmart Devices.

The Protégé screen dump in the figure below shows ontology information such as friendly name, model

name etc exported as an OWL file from the LinkSmart IDE for the device we just created (Thermometer).

Figure 59: IoT Device information Description viewed in LinkSmart Device ontology using the
Protégé editor

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 83 of 89 Submission date: 2011-11-30

Figure 60 shows the OWL representation of the GetMinTemperature method previously added in Service

Author.

Figure 60: IoT Device GetMinTemperature method

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 84 of 89 Submission date: 2011-11-30

13. POBICOS Overview

The POBICOS project targets computing environments which feature collections of objects, equipped
with sense-compute-actuate embedded nodes, which differ in their sensor, actuator and computing
resources. Moreover, the actual mix of objects, and the resources provided by those objects, which
will be available during execution is partly unknown when programming the application(s).

POBICOS aims to design, implement and test a platform that simplifies both the development and
the deployment of applications for such heterogeneous and incompletely specified systems. The key
challenge is to enable applications to take the best advantage of what-ever “resource opportunities”
exist at runtime, provided by the objects that happen to be available. The platform shall make such
“opportunistic” behaviour largely transparent to the programmer.

Towards this goal, the main objectives of POBICOS are:

o The design of a programming model and supporting mechanisms for opportunistic pervasive
computing;

o An ontology-driven approach for modelling and flexibly accessing resources for a given
application domain;

o The implementation of a corresponding middleware on top of embedded wireless
sensor/actuator nodes;

o The provision of suitable resource abstraction and domain-based customisation tools as well
as application development, simulation and deployment tools;

o The experimental validation of the middleware and tools for a selected application domain in
the area of home automation.

The domain of energy efficiency at home is the source of scenarios and requirements. Proof-of-
concept applications will be tested in a real setting.

13.1 System inspection protocol

The system inspection is needed for gathering various monitoring information and enabling control
actions to the POBICOS system. The monitoring and administration services can be exploited by the
developers of the target system, technical experts, and the end-users through the monitoring and
control tool. The system inspection protocol for monitoring and control of WSAN in unreliable
networking environments will be used as starting point for the WSAN management protocol and
administration tool of BEMO-COFRA.

13.1.1 General Architecture

For the monitoring and administration purposes, the connection between the user and the POBICOS
system is provided by means of a so-called gateway node, which is between the POBICOS network
and the device hosting the monitoring and control tool. The communication between the gateway
node and the user device is performed through UART.

Importantly, the gateway node is a common member of the network, and any node at any time can
be chosen as the gateway node. Other nodes recognize the chosen gateway node, and forward their
monitoring information to it. Thus, the system inspection is flexible for various environments and
user preferences.

The chosen gateway node and the more powerful device share a "base station" functionality. The
general view of the POBICOS network is gathered in the computationally powerful device, and so the
middleware resources are not wasted. All user-independent, network internal management
functionalities are independent of the gateway node, and so their processing logic need not be in the
gateway node.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 85 of 89 Submission date: 2011-11-30

13.1.2 Services

System inspection offers the following services for application, network, node, and system-wide
monitoring and control.

System-wide monitoring:

o retrieving a dynamic general view of the system

o logging the event occurrences inside the system

Application monitoring and control:

o monitoring the status of the applications (running/stopped)

o retrieving the application happiness level

o retrieving the application tree (the micro-agents and their parent-child relations)

o retrieving the mapping of the micro-agents in the nodes

o monitoring the execution of the micro-agents

o controlling the application specific configuration settings

Node and network monitoring and control:

o retrieving the type and resources of the nodes and the host objects

o monitoring the communication traffic among the nodes

o monitoring the CPU load in individual nodes

o controlling the object specific configuration settings

13.1.3 Communication

For every monitoring and control action, a corresponding message is constructed. The messages can
be broadcast, multicast, or unicast depending on the purpose of the message. For example the
request to start online monitoring is broadcast to every node, whereas e.g. the request to change an
object setting value needs to be sent only to the corresponding node. Multicast is used for example
in the case of application configuration setting change; the new setting value is forwarded only to
nodes hosting micro-agents that use the setting.

The messages are classified into requests, responses, spontaneous messages, and network internal
management messages. Requests, responses and spontaneous messages are related to online
monitoring and control. The network internal management messages are needed whether or not the
online monitoring is in use.

Requests are sent to the network when the user wants to gather information from the system or
perform a control action. A response is an answer to a request or an acknowledgement to a control
message. Spontaneous messages are notifications of the event occurrences in the target system.
They are automatically forwarded from the network to the monitoring gateway node and further to
the device running the monitoring and control tool. The network internal management messages are
used inside the network for example to pass required application settings from node to node.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 86 of 89 Submission date: 2011-11-30

14. Glossary

This chapter aims at providing a comprehensive understanding of important terms used in and
derived from the LinkSmart project. In addition, the terms listed in this chapter try to convey a
sense of their application and present the background of the fundamental concepts. Even if some of
the subsections seem to be a repetition of things already documented, this chapter can be seen as a
central point of access to a description of the LinkSmart terms. The definitions listed here have been
agreed on by the LinkSmart Consortium. (The terms are ordered from high-level to low-level)

Physical Device:

A “Physical Device” is a common device that offers some functions that affect the “physical world”.

Such functions could for example be providing light, heat, wind, open door, or reports physical
properties such as temperature, blood pressure, pulse, movements, etc. LinkSmart constitutes a
middleware that enables networking of physical devices.

Appliance:

An “Appliance” represents a physical device that is dedicated to a single purpose. Appliances refer to
more complex physical devices and are especially prominent in the field of home automation or
home entertainment.

LinkSmart-Enabling a Device:

“LinkSmart-enabling a Device” means the process of making the functions of a LinkSmart-compliant
physical device available and controllable for other devices in a LinkSmart network. Depending on its
device class, three methods make such a device LinkSmart-enabled:

• Installing (parts of) the LinkSmart middleware on the device

• Using the Limbo tools to embed Web Services on the device and generate a Proxy

• Using a Proxy to represent the device on a Gateway

At the end of this process the functions of this device can be invoked using Web Services, and
metadata about the device is provided in the format and protocol required by LinkSmart.

LinkSmart-Enabled Device:

A “LinkSmart-Enabled Device” is a LinkSmart-compliant physical device that has successfully run
through the LinkSmart-enabling process. A LinkSmart-enabled device owns a software
representation, i.e. a LinkSmart Device, in a LinkSmart network and

• Can be discovered by other devices in a LinkSmart network

• Makes all or a subset of its functions accessible as Web Services

• Offers its Web Services either natively (embedded code) or through a proxy

• Supports UPnP and advertises its entry into a Local Area Network through UPnP
broadcasting

• Supports LinkSmart Generic Services and LinkSmart Energy Service.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 87 of 89 Submission date: 2011-11-30

LinkSmart Device:

A “LinkSmart Device” constitutes the software representation of a LinkSmart-enabled device and its
functionalities, in order to enable access and control. The LinkSmart Device can either run as a
Proxy for the LinkSmart-compliant physical device on a gateway or it can run embedded in the
device. A LinkSmart Device can obtain LinkSmart identifiers for its services (HID) and also
application specific identifiers. Furthermore, a LinkSmart Device implements the “LinkSmart Generic
Services” and “LinkSmart Energy Services”. For one physical device there might exist one or more
LinkSmart Devices. A LinkSmart Device might also incorporate services from several physical
devices.

Gateway:

A “Gateway” is a physical device with IP capabilities, which manages a set of proxies for controlling
LinkSmart devices. A gateway must support Web Services and UPnP and should also be able to run
LinkSmart Discovery Managers. In addition, a gateway may also host other components of the
LinkSmart middleware.

Proxy:

A “Proxy” is a LinkSmart Device that consists of a software component responsible of communicating
with a physical device, understanding the technology used and the format of the data exchanged. It
is deployed on a gateway and represents the device to be controlled.

LinkSmart Network:

A “LinkSmart Network” represents a network of LinkSmart Devices and applications that
communicate with each other using Web Services and IP communication on top of a Peer-to-Peer
overlay.

LinkSmart Middleware:

The “LinkSmart Middleware” is a collection of interrelated components, i.e. LinkSmart Managers,
that work together to realise a platform of networked heterogeneous physical devices. The
LinkSmart middleware allows such devices to be part of an ambient intelligence environment.

Device Discovery:

The process “Device Discovery” covers several steps where a physical device is discovered,
semantically resolved and made accessible as a LinkSmart Device. In order for a device to be
discovered in a LinkSmart network, a definition of the device type must exist in the LinkSmart Device
Ontology.

LinkSmart Manager:

A “LinkSmart manager” (or short “manager”) constitutes the major building blocks that make up the
LinkSmart middleware. A LinkSmart manager encapsulates a set of operations and data that realise
a specific functionality and is mostly subdivided into several internal components.

LinkSmart Generic Services:

The LinkSmart Generic Services are supported by all LinkSmart Devices and contain a set of meta-
data methods that can be used to query the device about its properties.

LinkSmart Energy Services:

The LinkSmart Energy Services are supported by all LinkSmart Devices and provide methods to
retrieve information from the energy profile of the device and from the energy policy.

LinkSmart Identifier (HID):

A “LinkSmart identifier” (or simply “LinkSmart ID” or shorter “HID”) constitutes a unique identifier
for every LinkSmart Device, service or resource within a LinkSmart network. Network Manager
generates the HID, is responsible for the matching between logical and physical identifiers and for
the propagation of this information to other peers of the LinkSmart network.

CryptoHID:

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 88 of 89 Submission date: 2011-11-30

An application developer has the opportunity to assign his own CryptoHID to a certain LinkSmart
Device. This CryptoHID can directly be used throughout the application code and referred to when
expressing security, energy and other policies.

Session:

A “Session” traces the communication between elements of a LinkSmart network, in order to keep
the communication coherent. Sessions allow the maintenance of the state of each network element
as they communicate with each other. The Network Manager comprises a dedicated Session
Manager that creates and maintains the lifecycles of the session objects.

Ontology:

An “Ontology” is a representation of the knowledge of a formally defined system of concepts and
relations. In addition, an ontology can contain inference to derive new knowledge and integrity rules
to assure its validity. Therefore, an ontology forms a network of information and logical relations
described through a formal language such as the Web Ontology Language (OWL).

LinkSmart Device Ontology:

The “LinkSmart Device Ontology” is an ontology that contains knowledge about device classes, their
properties and services offered.

LinkSmart Peer-to-Peer Architecture:

The “LinkSmart Peer-to-Peer Architecture” allows LinkSmart Devices in different local LinkSmart
networks to access and communicate with each other. This means Web Services calls can be
executed remotely over a P2P overlay.

BEMO-COFRA D8.4 Training Package

Document version: 1.0 Page 89 of 89 Submission date: 2011-11-30

References

[1] http://www.osgi.org/Links/DeveloperKits

[2] The SENSORIA Development Environment, CASE Tool for SOA Development

http://home.mit.bme.hu/~rath/ppt/SDE.pdf

[3] http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

[4] http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

[5] http://www.mono-project.com

[6] eXtensible Access Control Markup Language (XACML) Version 2.0 (2005)

http://www.oasis-open.org/committees/xacml/

[7] OASIS: http://www.oasis-open.org

[8] IBM, Web Services Security

http://www.ibm.com/developerworks/library/specification/ws-secure

[9] eXist-db Open Source Native XML Database

http://exist.sourceforge.net

[10] Sun XACML Implémentation. <http ://sunxacml.sourceforge.net>

