

(Project No. 288133)

D5.3.2 Final LinkSmart-enabled environment

Published by the BEMO-COFRA Consortium

Dissemination Level: Public

Project co-funded by the European Commission within the 7th Framework Programme

 and

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Objective ICT-2011-EU-Brazil

http://www.cnpq.br/index.htm

Document control page

Document file: D5.3.2_Final_LinkSmart-enabled_environment_1.0.docx

Document version: 1.0

Document owner: Peeter Kool (CNet)

Work package: WP5 – Distributed Control Logic and Enabling Features

Task: Task 5.3 LinkSmart-enabled monitoring and control infrastructure

Deliverable type: P

Document status: approved by the document owner for internal review

 approved for submission to the EC

Document history:

Version Author(s) Date Summary of Changes made

0.1 Peeter Kool 2013-11-01 Initial ToC

0.7 Peeter Kool 2013-11-20 Added and updated content

0.9 Peeter Kool 2013-12-15 Ready for peer review

1.0 Peeter Kool 2013-12-31 Final version submitted to the
European Commission

Internal review history:

Reviewed by Date Summary of comments

Ferry Pramudianto 2013-12-28 Approved

Legal Notice

The information in this document is subject to change without notice.

The Members of the BEMO-COFRA Consortium make no warranty of any kind with regard to this
document, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. The Members of the BEMO-COFRA Consortium shall not be held liable for errors
contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

Document version: 1.0 Submission date: 2013-12-31

Index:

1. Executive summary ... 4

2. Introduction .. 5

3. Architecture of the initial LinkSmart-enabled environment 6

3.1 LinkSmart Network Manager and addressing scheme 8

3.2 LinkSmart Event Manager ... 10

4. Examples of LinkSmart integration .. 15

4.1 Architecture of the PLC Proxy .. 15

4.2 Architecture of the Unity integration (Monitoring Application) 16

5. Developer Tools for event based LinkSmart systems 20

5.1 Windows based LinkSmart event manager .. 20

5.2 Event Trace and debug tool .. 21

References ... 26

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 4 of 26 Submission date: 2013-12-31

1. Executive summary

This document is delivered with the software deliverable D5.3.2 Initial LinkSmart-enabled
environment. This deliverable documents the prototype from a LinkSmart environment perspective
and includes descriptions of the typical integrations done, one based on proxies and another one
where the integration is done in the device. The document includes also an overview of what a
LinkSmart environment is. Furthermore it contains a description and user guide of the tools
developed within the BEMO-COFRA project that easies debugging of event based systems within
LinkSmart.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 5 of 26 Submission date: 2013-12-31

2. Introduction

This document is delivered with the software D5.3.2 Final LinkSmart-enabled environment and is
an extension to the previous D5.3.1 Initial LinkSmart-enabled environment.

The initial LinkSmart-enabled environment is described at an architecture level in chapter 3. This
chapter also includes a small overview of the LinkSmart middleware. The following chapter 4
contains description of some of the most important integrations in to the initial LinkSmart
environment, i.e. LinkSmart proxies in the prototype deliverable. The actual code documentation
for these proxies can be found in deliverable D6.1 IoT-enabled legacy devices for production
monitoring and D6.5 Production Monitoring and Control platform.

A new section in this deliverable reflects the work done for improving developing event based
system with tools for.

The work has primarily been done in Task 5.3 LinkSmart-enabled monitoring and control
infrastructure.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 6 of 26 Submission date: 2013-12-31

3. Architecture of the LinkSmart-enabled environment

The initial LinkSmart enabled environment consist basically of the LinkSmart network, see Figure 1
below, and the different devices and their proxies.

LinkSmart
Network Manager

LinkSmart Network

LinkSmart
Event Manager

Monitoring Application
Unity

PLC Proxy Camera Proxy

...
PLC

Figure 1: Architecture of the initial LinkSmart enabled environment.

The LinkSmart network is a private P2P network that provides communication services and
addressing through SOAP-tunnelling (see 3.1) as well as an event manager that can be used for
publishing of and subscribing to events (See section 3.1 and section 3.2 for an introduction to
LinkSmart). In the first demonstrator setup we ran only a small LinkSmart network containing only
one LinkSmart server node (see deployment view Figure 2). From the developers point of view it
will be completely transparent if the network is extended over several nodes in different network
locations in a real deployment, i.e. the proxies and applications will not change.

The initial LinkSmart environment was primarily implemented using the LinkSmart event
infrastructure as the carrier of messages in-between different components. All components that
are integrated register their event service in the network manager in order to get a LinkSmart
address (HID) that is then used for making subscriptions in the LinkSmart Event Manager.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 7 of 26 Submission date: 2013-12-31

LinkSmart Server

LinkSmart Network
Manager

LinkSmart Event Manager

Tablet

Monitoring
ApplicationPhone

Monitoring
Application

PC

Monitoring
Application

PC

PLC Proxy

Camera

Camera

LinkSmart Network

Figure 2: Deployment overview of demonstrator

In the first demonstrator there were two main strategies for adding devices/services to the
LinkSmart infrastructure:

1. Creating a proxy: This was done for the devices/services that cannot be extended with
LinkSmart functionality, either because of processing power or because they are closed
systems. These include the PLC and Arduinos. For these devices a LinkSmart proxy is
created that runs on a gateway and implements the LinkSmart services and communicates
with the device, i.e., acting as the proxy for the device in the LinkSmart network.

2. Direct integration: Some of the devices, such as the camera and the Unity based
monitoring application, are powerful enough to run the LinkSmart services directly on the
device. This means that the devices themselves can register their services on the LinkSmart
network and host the services on the Device.

Section 4.1 provides an example for a proxy based integration for the PLC proxy integration.
Section 4.2 provides an example of direct integration.

The following two sections will give a short overview of LinkSmart, further reading regarding
LinkSmart can be found in (LINKSMART, 2012), (LINKSMART2, 2012) and (LINKSMART3, 2012)

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 8 of 26 Submission date: 2013-12-31

3.1 LinkSmart Network Manager and addressing scheme

The LinkSmart network manager consists of three main functions:

 P2P overlay network

 HID addressing scheme

 SOAP Tunnelling

The following sections will give a short introduction to these functions

3.1.1 Building a P2P overlay network

The main objective of the Network Manager is to interconnect different LinkSmart Enabled Devices
and services through the network. The main problem of this task is that most of the networks may
be hidden in Local Area Networks, behind firewalls, routers and Network Addressing Translators
(NATs), so it would be difficult to interconnect the different nodes.

However, the Network Manager solves this problem by building an overlay network, independently
of the network addressing and protocols.

The Network Manager relies on JXTA P2P1 platform in order to build the overlay network. JXTA is a
set of open, generalised P2P protocols enabling any connected device on the network to
communicate and collaborate. Using the JXTA protocols, LinkSmart devices and services are
directly connected even if they are connected in different networks separated by firewalls or NATs.

Figure 3: Overlay Network

1 http://en.wikipedia.org/wiki/JXTA

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 9 of 26 Submission date: 2013-12-31

The figure above shows an example of how the different nodes are interconnected in the LinkSmart
Network.

3.1.2 The HID addressing scheme

The addressing scheme used in the LinkSmart Network is based on identifiers called HID. An HID
represents a service endpoint, for instance a Web Service endpoint. Each service or device has to
create an HID in order to be visible inside the LinkSmart Network. For simple services the
Network Manager provides one interface for registration:

String HID createHIDwDesc(String description, String endpoint)

Any application, or software component, in the system can register its services or devices in the
Network Manager. A specific interface (createHIDwDesc) provides a mechanism for registering
HIDs using a description and the local endpoint where the service will be placed.

The description is provided by the application or component itself, and it provides a way for
identifying the service in other LinkSmart-enabled devices. In this way, an application running on
another LinkSmart-enabled device is able to get all the HIDs matching a specific description
through the following Network Manager interface:

String[] getHIDsbyDescription(String description)

The endpoint allows the Network Manager to know where to deliver the data received for an HID,
because otherwise it would be impossible to determine which component or application is
responsible of managing the resource registered with that HID.

3.1.3 SOAP Tunnelling

Thus, the Network Manager enables a way to communicate between different LinkSmart Enabled
devices transparently, building an overlay network in which resources (devices, services and
contents) are identified by an HID. The main objective of the SOAP tunnelling communication is
for LinkSmart to provide SOAP messages exchange using the P2P transport schemes provided by
the Network Manager.

In order to use P2P networking/addressing/transport schemes together with web services and
UPnP we need some kind of virtualisation of endpoints that allow us to use P2P networking. For
this reason, all endpoints for UPnP and web service calls are grounded in a SOAP sink (ideally
locally) which repackages the SOAP message and routes it through the Network Manager, as
shown in Figure 4. The Network Manager is responsible of the message transmission and finally
calls the SOAP sink that performs a local SOAP call to the intended SOAP endpoint.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 10 of 26 Submission date: 2013-12-31

Transmission

SOAP Sink

(Acts as a WWW server)

Network Manager

SOAP Sink

W
S

U
PnP

S
e

n
d

D
a

ta

Network Manager

R
e

c
e

iv
e

D
a

ta
L

o
c
a

l
S

O
A

P
 c

a
ll

SOAP Tunnelling

through Network

Manager

S
e

n
d

D
a

ta

EndPoint

URI in HTTP POST

/{senderHID}/{receiverHID}/{sessionID}/endpoint

Figure 4: SOAP tunnel

The P2P networking with the SOAP tunnelling technique will facilitate event management, as well
as SOA in general in the BemoCofra architecture.

3.2 LinkSmart Event Manager

Below we describe the practical usage of events when developing application logic based on the
LinkSmart event manager. Examples are based on the .Net client code of LinkSmart, but there is
also a corresponding Java version.

3.2.1 Event structure

Events are a useful tool for several situations in application development. When working with
sensors publish/subscribe based events processing is an efficient way of retrieving values, instead
of polling sensor values. This way, multiple clients can receive events with the current sensor
values.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 11 of 26 Submission date: 2013-12-31

Events in LinkSmart are implemented using a standard “publish/subscribe” model and the event
itself is built up with a “topic” that is used for defining the event topic and an arbitrary number of
key value pairs.

<Event>

 <Topic>MyTopic/SubTopic</Topic>

 <Part>

 <Key>ExampleKey</Key>

 <Value>ExampleValue</Value>

 </Part>

 <Part>

 <Key>ExampleKey2</Key>

 <Value>ExampleValue2</Value>

 </Part>

 <Part>

 <Key>ExampleKeyN</Key>

 <Value>ExampleValueN</Value>

 </Part>

</Event>

Listing 1: Event topic and events

There are two main parts when working with events to be used in applications:

 Creating events to be consumed elsewhere
 Listening to events

3.2.2 Creating events

In order to create events one only needs to contact the Event Manager. In LinkSmart projects
created using the .net libraries the Event manager is available in m_eventmanager. Basically one
sets the Topic of the event and then populates the Key/Value pairs.

 //Create an event with two key/value pairs

 global::part[] eventValueKayPairs = new global::part[2];

 eventValueKayPairs[0].key = "ExampleKey";

 eventValueKayPairs[0].value = "ExampleValue";

 eventValueKayPairs[1].key = "ExampleKey2";

 eventValueKayPairs[1].value = "ExampleValue2";

 m_eventmanager.publish("ExampleTopic", eventValueKayPairs);

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 12 of 26 Submission date: 2013-12-31

Listing 2: Example code creating and publishing an event

3.2.3 Listening to events

Listening to events require that a web service is created that receives the events and it is required
that it follows a specific EventSubscriber WSDL. In the projects created with the LinkSmart.net
libraries this already done and exists in the EventSubscriberService.cs.

The creation of the Web Service is done using standard .net WCF methods:

 //Create the ws on port 8123

 string address = string.Format("http://{0}:{1}/Service", "localhost", "8123");

 Uri[] BaseAddresses = new Uri[]{

 new Uri(address)};

 //Turn off 100-continue

 System.Net.ServicePointManager.Expect100Continue = false;

 //Create the event subscriber

 using (ServiceHost serviceHost = new ServiceHost(typeof(Test), BaseAddresses))

 {

 try

 {

 ServiceMetadataBehavior smb;

 if ((smb =

serviceHost.Description.Behaviors.Find<ServiceMetadataBehavior>()) == null)

 {

 smb = new ServiceMetadataBehavior();

 smb.HttpGetEnabled = true;

 serviceHost.Description.Behaviors.Add(smb);

 }

serviceHost.AddServiceEndpoint(typeof(IMetadataExchange),

MetadataExchangeBindings.CreateMexHttpBinding(), address + "mex");

serviceHost.AddServiceEndpoint(typeof(EventSubscriber), new

BasicHttpBinding(BasicHttpSecurityMode.None), "");

 serviceHost.Open();

 }

 catch (Exception e) { Console.WriteLine(e.Message); }

Listing 3: Creation of the Web Service for event listening

The next step is to define the function that will receive/implement the Web Service call. In this
case the message handling needs to be quick, because the Event Manager will remove the
subscriber if the call fails due to time out. If the processing of individual events takes a lot of time
one should consider using asynchronous worker threads so that Web Service call can return
immediately.

The code below shows an example implementation of the method that receives the events. This
implementation only writes the event to the console.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 13 of 26 Submission date: 2013-12-31

 #region EventSubscriber Members

 //Event call back interface

 notifyResponse EventSubscriber.notify(notify request)

 {

 string result = request.topic + "\n========\n";

 try

 {

 foreach (part _part in request.@event)

 {

 result += _part.key + "=" + _part.value + "\n";

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 }

 Console.WriteLine(result);

 return new notifyResponse(true); }

 #endregion

Listing 4: Event reception method

The final step is to subscribe to the events that one wants to handle. This involves creating an HID
for the event Web Service endpoint and registering the events that will be subscribed using the
Event Manager.

 //Create HID for Event Subscriber WS

string myhid = m_networkmanager.createHIDwDesc("eventExample", address);

 //Listen to ExempleEvent

 m_eventmanager.subscribeWithHID("ExampleEvent", myhid);

 //One can listen to multiple events with same interface

 m_eventmanager.subscribeWithHID("ExampleEvent2", myhid);

It is also important to remove the subscriptions when the process ends. Otherwise one can receive
multiple events for one actual event, because we might have multiple subscribers with the same
end point. The code below cleans up subscriptions and HID

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 14 of 26 Submission date: 2013-12-31

 //Unsubscribe to Events

 m_eventmanager.subscribeWithHID("ExampleEvent", myhid);

 m_eventmanager.subscribeWithHID("ExampleEvent2", myhid);

 //Remove HID

 m_networkmanager.removeHID(myhid);

Listing 5: Subscribe/Unsubscribe to events

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 15 of 26 Submission date: 2013-12-31

4. Examples of LinkSmart integration

4.1 Architecture of the PLC Proxy

OPC Server

Siem
en

s S7
-1

2
0

0
D

river

LinkSmart
Proxy

O
P

C
 D

A
 C

lien
t

SO
A

P
W

eb
service

Even
t

P
u

b
lish

er

P
o

llin
g Th

read
s

Even
t B

ro
ker

A
p

p
licatio

n

NotifyPublish

HTTP/WS

TCP/IPPROFINET HTTP/WS

Figure 5: PLC Proxy Architecture

OPC: the term OPC stands for OLE (Objects Linking and Embedding) for Process Control specific
for automation devices. It was developed to ensure the communication of real-time data between
control devices coming from different suppliers, in order to provide a common bridge for Windows
based software applications and process control hardware.

Therefore, to enable this uniform integration between hardware and software, a connection
through the OPC server must be established. Moreover, following the requirements of OPC Data
Access, an OPC Item object, in this case a PLC variable, must be bundled into an OPC

Groupobject before it can be accessed by an OPC client.

In our scenario, the OPC client is a .NET application that accesses the PLC variables through the
OPC server and is mostly responsible for three things:

 Publish events in accordance to the states of PLC variables:
The prerequisite for this task is the initialization of an event publisher within the LinkSmart
network, as well as the various event objects that represent different data flows in the
scenario. To keep track of the PLC variables, the application enters a thread that pools the
variables and performs comparisons of their values at different timestamps (in this case,
every 500 ms). When a variable’s value changes, the appropriate event object is updated
and subsequently published into the network.

 Modify PLC variables in accordance to incoming events:
The application must also initialize an event subscriber and provide a delegate method that
determines which tasks should be performed when a certain incoming event is received.
Afterwards, the client simply waits for the events and modifies the appropriate PLC
variables when a certain event arrives.

 Provide an outward mechanism to access and modify PLC variables:
The client then utilizes Windows Communication Foundation (WCF) service to provide the
other parts of the system a possibility to work with the PLC variables. These services
include the setter and getter methods for most of the variables contained in the PLC. It
should be noted that the PLC variables that actually control the state of hardware (the
“actuator” variables) should not be modified from outside the PLC in order to ensure the
correctness of the PLC logic, and therefore no set methods are provided for them.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 16 of 26 Submission date: 2013-12-31

The following is the (sequence) diagram of the scenario that the client application adheres to. The
client application resides the same lane/column as the PLC. Incoming arrow into the column
denotes incoming events while arrows with the opposite direction denote events published by the
application.

Figure 6: System Scenario

It bears repeating that to perform its tasks the client application must first establish a connection
with the OPC server. Furthermore, the client also needs to register an OPC Group and an array of
OPC items (PLC variables) that it wants to have access to. Finally, due to the nature of its
functionalities, the client application must be active as long as the system is running.

4.2 Architecture of the Unity integration (Monitoring Application)

Unity is a cross platform development platform for games and other 3D visualisations, see
(Unity,2012). Applications developed with Unity run on a range of different platforms including PC,
Android and iOS. The language used for the developing in Unity is Mono which is an Open Source
version of the .Net environment.

The monitoring application is developed in Unity because of the good visualisation capabilities as
well as the cross platform capabilities. Because Unity runs on more powerful platforms, i.e. tablets,
smartphones etc., and that it contains a full development environment we choose to integrate it
with LinkSmart directly without usage of any proxy.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 17 of 26 Submission date: 2013-12-31

Unity Mono Platform

Web Server Class

Network Manager Event Manager

Service endpoint

Web Request Handler

1, Register Service Endpoint
2, Subscribe to events

3, Recieve events

Unity Objects

Figure 7: LinkSmart integration with monitoring application (Unity)

The basic integration of LinkSmart (See Figure 7) consists of two basic components:

 Web Server class: Implements an HTTP server that can be extended with handlers.

 Web Request Handler: That intercepts HTTP request made to the Web Server class, parses
them and finally invokes the corresponding actions that map to an event.

The basic interaction steps necessary to connect to the LinkSmart network are:

1. Create a service endpoint: This involves registering the event consumer as a service
endpoint in the LinkSmart Network Manager, i.e. getting an HID for the endpoint. As soon
as there is an HID for the endpoint it is possible to invoke the service on the LinkSmart
network using SOAP tunnelling.

2. Subscribe to events: This step uses the HID for the event consumer to subscribe to events.
This means that all matching events (Depending on which Topics has been subscribed to)
will be forwarded to the event consumer service endpoint.

Note that normally in most programming environments these call backs would be made using Web
Service libraries as opposed to running a general Web Server and intercepting the HTTP calls, but
Unity lacked the support for this when handling parallel incoming events so we had to go down to
the HTTP level and parse the incoming messages ourselves.

The following listings will illustrate (though a bit simplified) how this work.

 public void RunHttpServer()
 {
 //Start the Web Server at port 8080
 m_endPoint = "http://*:8080/"; ;

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 18 of 26 Submission date: 2013-12-31

 m_webServer = new WebServer(m_endPoint);

 //Put up a request Listener
 m_webServer.IncomingRequest += WebServer_IncomingRequest;
 m_webServer.Start();

 //Attach the endPoint to the LinkSmart network

 NetworkManager.NetworkManagerApplicationClient nm = new
NetworkManager.NetworkManagerApplicationClient();

 string hid = nm.createHIDwDesc(0,0,"UnityClient", m_endPoint);

 //Make a subscription , Topic is a regexp and we want to subscribe to all
events, i.e Topic=.*
 EventManager.EventManagerPortClient em = new
EventManager.EventManagerPortClient();
 em.subscribeWithHID(".*", hid);

 }

Listing 6: Setting up the web server and registering the endpoint

In Listing 6 above shows how the web server is started and how we register the service in the
LinkSmart network . It also shows how we make a subscription for all events to the service end
point. Not also that we add a request listener that will intercept the calls to the web server.

 public void WebServer_IncomingRequest(object sender, HttpRequestEventArgs e)
 {
 HttpListenerResponse response = e.RequestContext.Response;
 HttpListenerRequest request = e.RequestContext.Request;

 StreamReader sr = new StreamReader(request.InputStream);
 try
 {
 XmlDocument xDoc = new XmlDocument();
 if (!sr.EndOfStream)
 {
 xDoc.Load(sr);

 //We have a request;
 string Topic = "";
 XmlNode xNode = xDoc.SelectSingleNode("//*[local-name()='topic']");
 if (xNode != null)
 {
 Topic = xNode.InnerText;
 Listener.Part[] parts = CreateParts(xDoc);
 ProcessEvent(Topic, parts);
 }
 }
 }

 catch (Exception ex)
 {
 System.Console.WriteLine("Exception When Processing HTTP Call");
 System.Console.WriteLine(ex.Message);
 }

 }

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 19 of 26 Submission date: 2013-12-31

 static public Listener.Part[] CreateParts(XmlDocument xDoc)
 {
 XmlNodeList xNodes = xDoc.SelectNodes("//*[local-name()='Part']");
 Listener.Part[] res = new Listener.Part[xNodes.Count];
 for (int i = 0; i < xNodes.Count; i++)
 {
 Listener.Part p = new Listener.Part();
 XmlNode xKey = xNodes[i].SelectSingleNode("//*[local-name()='key']");
 if (xKey != null)
 p.key = xKey.InnerText;
 XmlNode xValue = xNodes[i].SelectSingleNode("//*[local-name()='value']");
 if (xValue != null)
 p.value = xValue.InnerText;

 res[i] = p;
 }
 return res;
 }

Listing 7: Parsing the incoming event

Listing 7 contains the actual parsing of the incoming event . The function
WebServer_IncomingRequest is called by the Web Server when an HTTP call has been received.
Since it is a Web Service call the payload is in SOAP format, i.e. XML, we parse it using an XML
parser. The CreateParts function parses the events key value pairs. In most programming
environments all this parsing would be automatically handled by the normal Web Service libraries.
But as explained earlier the Mono framework in Unity lacked support for parallel invocation of the
web service service.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 20 of 26 Submission date: 2013-12-31

5. Developer Tools for event based LinkSmart systems

Within in the BEMO-COFRA project additional tools for managing LinkSmart enabled systems were
developed. The reason for this was the prototype development for the first BEMO-COFRA
prototype showed that it was hard to debug loosely coupled event architecture specially when
there was no support for tracing actual events or tracking easily who is subscribing to what.

Two new tools were developed and they will be discussed in detail in the following sub chapters.

5.1 Windows LinkSmart Event Manager

The windows based LinkSmart event manager provides a visual tool that controls the LinkSmart
event manager and also shows it status, see Figure 8. The main purpose of the tool is to provide
information of what’s currently going on with the event manager if there are any communication
errors or that a subscriber is not responding properly.

Figure 8: Windows LinkSmart event manager

In the tool it is possible to stop and start the event manager, remove all subscriptions and to clear
the all other HIDs that match the description of the event manager. The last function is very useful
when debugging to avoid problems with dead HIDs. The tool window it also shows the status and
current settings of the Event Manager:

 Description: The description the Event Manager uses when it registers at the Network
Manager.

 HID: The HID for the Event Manager.
 Address: The endpoint where the Event Manager Web Service is published

When a subscriber subscribes to events the information will be shown in the console window in the
tool, see Figure 1 below.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 21 of 26 Submission date: 2013-12-31

Figure 9: Subscription created and removed

When a subscription is removed it will also be displayed in the console window inside the tool. The
information shown when a subscription is created or removed are:

 The HID of the subscriber, i.e. which client it is.
 The Topic of the subscription, i.e. what events it listens to

Errors that occur when the Event Manager distributes events will also be shown in the console. In
this case the actual exception message will be shown.

5.2 Event Trace and Debug Tool (ETDT)

The Event Trace and debug tool provides the capabilities of eavesdropping on all event
communication at an event manager. This tool is not part of the event manager like the Windows
Event Manager described in the previous section, instead it as run side by side with the LinkSmart
Event Manager and can be turned off/on completely independently, see Figure 10.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 22 of 26 Submission date: 2013-12-31

LinkSmart Event Manager

Event Producer Event Producer Event Producer

Event Consumer Event Consumer Event Consumer

Event Trace and Debug Tool

Figure 10: LinkSmart and the Event Trace and Debug Tool

The Event Trace and Debug Tool act as a normal event consumer from the LinkSmart Event
Manager but it listens to all events that pass through the Event Manager without any filtering.
Because of this it is essential that the Event Trace and Debug Tool is well behaved and does not
introduce problems by listening, i.e. it should be transparent for the system and the system
behaviour should not change when the ETDT is used.

The inner architecture of ETDT reflects this by trying to be as efficient as possible. LinkSmart
Event Manager can be handling a large number of events per seconds and therefore the ETDT
must also be fast in its processing of events in order not to unnecessarily load the Event Manager,
see Figure 11.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 23 of 26 Submission date: 2013-12-31

Event Trace And Debug Tool

EventReceiver

EventQueue

EventDBEvents

Query and User
Interface

Figure 11: Inner architecture of the ETDT

The main components in the ETDT are:

 Event Receiver: Listens to the events. As soon as an event arrives it will queue in the
EventQueue without any other processing.

 EventQueue: Acts as a buffer in between the persistent store and incoming events. It
uses MSMQ as mechanism guarantying that no events are lost.

 EventDB: Manages the persistent store of events and provides interfaces to query the
stored events database. The default implementation uses SQLite for storage, but this can
be changed to in memory databases et c.

 Query and User Interface: Is the actual consumer of the stored event data.

The ETDT provides a web based user interface that can be used with any ordinary web browser,
see Figure 12.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 24 of 26 Submission date: 2013-12-31

Figure 12: ETDT web based user interface

 The tool presents the events always with the newest events first and always in the exact order
they have arrived to the tool. The page also contains filters that one can apply for selecting
events. An example of this is shown in Figure 13.

Figure 13: Example of a filter

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 25 of 26 Submission date: 2013-12-31

Here the user has selected to filter on the contents of the events by filling in “12”. The user
interface will reflect this by only showing events that contain this information. The properties that
can be filtered currently are:

 StartDate: The earliest date and time of the event.
 EndDate: The earliest date and time of the event.
 Topic: Any part of the Topic should contain the entered string.
 Content: Any part of the Event content should contain the entered string.

There are two more buttons available in the user interface which can be useful when dealing with
events:

 CLEAR EVENTS: Will clear the database of all previous events making it empty.
 BACKUP EVENTS: This will create a backup of the database currently in use. This backup

can be used for further analysis with other tools. An interesting option is that this backup
can be used for replaying the events in the exact order that they occurred which can be
useful for simulation. The database backup is in SQLite 3 format which can easily be
exported to other formats.

Finally there is a link on the ID for each event. Clicking this link will gather the full information
about the event which will be returned in an XML structure, see Listing 8.

<?xml version="1.0" encoding="utf-8"?>
<EventStructure xmlns="http://events.linksmart.org/EpaEvent"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <EventMeta>
 <EventType modelRef="BEMO-COFRAEvent">CHANGE_SENSOR_VALUE</EventType>
 <EventID>c2562eb6-4b70-440d-83a4-fc24919b00c6</EventID>
 <Topic modelRef="BEMO-COFRA">CHANGE_SENSOR_VALUE</Topic>
 <Timestamp>2014-02-24T13:10:12.6299322+01:00</Timestamp>
 <Comment />
 <Source>
 <Location />
 <ObjectID modelRef=”BEMO_COFRA”>SENSOR_ID_21</ObjectID>
 <ProcessID />
 </Source>
 </EventMeta>
 <Content modelRef="">
 <event topic="CHANGE_SENSOR_VALUE" xmlns="">
 <tuple>
 <key>HEAT</key>
 <value>12</value>
 </tuple>
 </event>
 </Content>
</EventStructure>

Listing 8: The full event structure in XML

As can be seen all elements do not have value, these are optional and depends on the original
event producer if they will have values. In the example above we do not have any information
regarding the actual Location of the event because it is not supplied by the event producer.

BEMO-COFRA D5.3.2 Final LinkSmart-enabled environment

Document version: 1.0 Page 26 of 26 Submission date: 2013-12-31

References

 (LINKSMART, 2012) http://www.hydramiddleware.eu/news.php, visited 2012-11-15.

 (LINKSMART2,2012) http://sourceforge.net/projects/linksmart/, visited 2012-11-15.

 (LINKSMART3,2012) D12.9_Final External Developers Workshops Teaching Materials.pdf

 ,visited 2012-11-15.

 (Unity,2012) http://unity3d.com/unity/ , visited 2012-11-15.

http://www.hydramiddleware.eu/news.php
http://sourceforge.net/projects/linksmart
http://www.hydramiddleware.eu/hydra_documents/D12.9_Final%20External%20Developers%20Workshops%20Teaching%20Materials.pdf
http://unity3d.com/unity/

